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Preface

How to use these notes

The way to learn physics is by doing it and thinking about it yourself, rather
than just reading about it. The goal of this text is not to teach you physics,
but to tell you what the underlying principles are. To become a successful
physicist this means that you need to practise taking these principles and
using them to explain or predict what will happen in specific situations.
You will get some practise applying these rules in the discussion/lab (DL)
activities, the assigned homework and extra problems in the text. This text
is also designed to reinforce the principles we expect you to get out of the
labs.

These notes are not a complete enumeration of all problems given in the
course. They are supposed to be a complete enumeration of the principles
we wish you to learn, and give some guidance on how to approach specific
problems to illustrate those principles. The skill we want you to learn is to be
able to take a description of a physical phenomenon, figure out which prin-
ciples of physics are relevant for answering the question, and then construct
a logical argument that starts with those principles and gets to an answer
about the phenomenon.

Do not spend your time in DL looking for the answers to a
particular activity.

These notes do not contain the solutions to DL activities in them, as the skill
you are practising in DL is working these things out. If you spend your time
reading through the notes this will mean a lot of wasted time in DL. The
DLs are supposed to be fairly self-contained in introducing you to an idea,
and this should not be necessary.

vii



viii CONTENTS

Have a study plan

If you want to get the most out of the DLs, one way of doing it would
be to read the notes beforehand to get an idea of what is being described
and the models being used. Use the DL activities to “catch” where your
misconceptions are. Then go back and re-read the notes and see if your
question is answered there. Finally, work through the homework to test if
you understand the concept. An example “study plan” is shown below:

1. Read the section of the notes
Get basic concepts

2. DL
Practise applying concepts
Identify misconceptions

3. Read the section of the notes
Clear up misconceptions

4. Solo FNTs
Test your ability to apply principles

5. Group FNTs (outside of class)
Test your ability to explain physics
Ask others about things you didn’t understand
Hint: If you cannot explain why your answer is right, or why the other
person’s answer is right you still don’t understand the underlying con-
cept.

6. Go to office hours
Resolve misconceptions that you couldn’t resolve as a group
As you have tried to work them out yourself the answers will stick with
you longer!

The group that you use for meeting and discussing your FNTs does not need
to be your group from DL. Having a different group may be beneficial as it
will give you experience explaining things to different groups of people.

How this text is organised

In writing any text, the issue of what to put in and what to leave out always
arises. In a textbook the author may write additional topics that never get
covered in a particular course, but because this text was written specifically
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for physics 7C students may think that everything in this text is testable.
However, physics 7C does change slightly from quarter to quarter. Your
instructor and the DL notes should tell you which parts of the notes are
relevant to various parts of the course.

The sections in the notes are organised in the following way (symbols show
how these sections are marked throughout the text):

• Chapters and sections
These are the bare bones of the course notes, and provide the basic
principles we are trying to teach. Some examples will be given. The
goal here is to memorize the principles and to learn how to apply those
principles.

• Advanced sections*
These go into greater depth, or clear up points of possible confusion.
We do not require you to fully grasp what is in these sections. These
sections are there primarily for when we have over-simplified a topic
and a student thinking about things carefully may be misled, and for
the student that is enthusiastic about physics.

• Applications sections†

These sections are examples of the physics principles that you have
learnt already, but applied to the real world. When applied to the
real world, physics is much more interesting. They differ from the
main notes in that the main notes explain principles that you have to
remember, while the application sections should not be memorized.

• Appendices
With the exception of the first appendix (a collection of physics con-
stants), the appendices are brief outlines of subjects we expect you to
know from other classes, and to give you an idea of roughly the level
we expect. The appendices will not be covered in class at all, so if they
contain material you are unsure of seek help in office hours or find a
good textbook on the subject.

What physics 7C covers

Waves, fields and a semi-classical introduction to quantum mechanics.
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Unit 8:

8-1: An introduction to waves
We begin our study of waves in this first unit of Physics 7C with an introduc-
tion to waves and then a thorough development of a model – the harmonic
plane wave model – which we will then use extensively to make sense of a
wide variety of wave phenomena.

In this section we will familiarise ourselves with waves by concentrating
on material waves. These are the disturbances or vibrations of atoms or
molecules of a particular substance. Any sort of ripple that you have seen,
as well as sound is an example of a material wave. There are other types of
waves such as light or matter waves which are not as easy to visualise, and
we shall postpone detailed discussion until §9-4 and §10-1 respectively.

An important message of this entire course is that one of the distinguishing
features of physics is the continual striving for general principles and simple
models that can be applied to large classes of phenomena. In our study of
wave phenomena we very consciously take this approach; the focus is on the
model and its representation, and not on one or another of an almost unlim-
ited number of individual phenomena associated with sound, light, TV and
radio waves, microwaves, etc. Our goal is to enable you to develop a useful
understanding of wave behavior that you can then apply to any phenomenon
that can be modeled as a wave, whether on a quiz or the course final, or
more importantly, throughout your everyday life and in your professional or
scientific career.

8-1-1 What is a wave?

Some primitive wave concepts

There are two important goals associated with the first part of this unit.
To become familiar with wave phenomena and how we analyze them and

5



6 CHAPTER 8-1. AN INTRODUCTION TO WAVES

secondly, to understand the mathematical representation of one-dimensional
harmonic waves sufficiently, so that we can use it as a tool throughout the
rest of the course to help us understand the physics of sound and light (elec-
tromagnetic) waves.

A material wave is a particular, although very common, type of internal
motion of a medium (material substance). In order for material waves to
exist there must be forces between neighbouring particles in the medium.
We will examine how a disturbance travels by colouring a medium three
different pieces and labelling them as sections #1, #2 and #3.

Section #1 Section #2 Section #3 F2 on 3

F3 on 2F1 on 2

F2 on 1

Direction of
movement

The “displacement” of the medium in section #2 is pulled down by sections
#1 and #3. Thus section #2 will be accelerated downward, back toward
equilibrium. By Newton’s third law section #2 must exert an equal and
opposite force F2 on 3 on section #3. This will cause section section #3
to accelerate upward, so a little time later section #3 will be raised. The
“disturbance” has travelled from section #2 to section #3 without the in-
dividual pieces of medium travelling along with it! You may wonder why the
sections exert a force on one another at all – the origin of this force can be
traced back to the fact that the individual atoms have a preferred separation
r0 and that by stretching or squashing the medium the atoms push on their
neighbours. This is the Lennard-Jones interaction that we learned about
in Physics 7A! We have simply clumped atoms together into three sections
for convenience – you could have the same discussion with individual atoms!
These restoring forces are typically greatest in the solid phase and least in
the gaseous phase.

There is one small detail that you may be wondering about – by Newton’s
third law there must be a upward force F2 on 1. Why does the pulse not
travel in both directions? The answer is that the pulse was previously in
section #1, and to get back to the level in the picture section #1 must have
travelled down. From Newton’s first law we know that if there was no net
force acting on section #1 it would keep travelling downward at a constant
speed. It comes to rest precisely because there is an upward force F2 on 1!
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The point being made here is that the concepts we are introducing when
discussing material waves are no different from the concepts that we have
already introduced when discussing forces, motion and atoms. The reason
we place such an emphasis on waves is that dealing with the form of a wave is
often easier than trying to visualise force diagrams for many different parts of
a medium. Eventually we will encounter non-material waves (such as matter
waves or light) and our previous exposure to disturbances in material waves
will be an invaluable guide.

The disturbance (or, more technically, an oscillation) may be spread through-
out the medium and recur continuously at each point (repetitive wave) or
the oscillations may exist for only a limited time at each point (pulse-type
wave). The material wave that we have divided into sections is an example
of a pulse-type wave.

Waves in a medium are started by outside forces that act on some of the
particles in the medium to start them oscillating. External forces are not
required to keep a wave going once it has been started. In the example of a
surface water wave, the rock dropped into the pond is the outside disturbance
that starts the wave motion. Once started, the wave continues on its own.
We don’t have to continue to drop rocks into the pond to keep the ripples
moving.

A refined definition of a wave

Let us preface this by saying that it is difficult to come up with a general
definition of a wave. For the moment we will content ourselves by looking at
the definition of a material wave:

A material wave is a large movement of a disturbance in the
medium from its equilibrium position, whereas the particles that
make up the medium move very little.

Let’s look at each of the italicized words in this definition more closely. A
wave is the movement of something. But what is it that moves? Think
about the example of the expanding ripples in the pond. It is the ripples
that move significantly. There is some movement of the individual water
molecules, but they merely bob up and down – they do not travel along
with the wave. The movement of the ripples along the surface of the water is
what our eyes follow, and those ripples are what we mean when we talk about
“the wave”. The ripples are a disturbance of the surface of the water. If we
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focus on a leaf floating on the pond as the ripples pass, we see the leaf bobs
up and down, i.e., oscillates. It does not travel along with the wave. The
water surface oscillates as the ripples pass through it, and then stop. But
the oscillations are not the wave. Rather it is the ripple (i.e. “disturbance”)
that moves across the water that we call the wave.

Example #1:
Here is an example that will demonstrate the difference between particles

of the medium moving versus a disturbance in a medium moving. Take a
bowl of water, and tip a small amount of olive oil on the surface, so that you
have a situation pictured below:

Oil

y

x

If you oscillate your hand gently at the location “x”, do you get waves at the
location “y”? Do you end up with oil moving to the location “y”?

8-1-2 Some properties and characteristics

In most material waves we typically encounter, the “shape” of the disturbance
stays the same over short distances of travel. In our example, the ripples
look similar as they expand away from the initial disturbance. Over greater
distances, however, we notice changes. The ripples seem to die out as the
radius of the circle they make increases. In some waves, the shape may
remain constant over very long distances, as in low frequency sound waves
at large depths of the ocean.

Material waves provide a mechanism for transferring energy over consid-
erable distances, without the transport of the material medium itself.
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8-1-2-1 A pulse wave

A pulse is a finite length disturbance. For example, if you shook the end of
a rope once you would produce a pulse wave as shown. Another example of
a pulse-type wave is the example of a rock thrown into a pond.

A

The location of the rope before and after the pulse passes is the equilibrium
position. The maximum magnitude of the displacement of the pulse from
equilibrium is the amplitude, designated here by the letter A. Note that A
is always positive.

8-1-2-2 A repetitive wave

Repetitive waves can have many different shapes. One of the simplest to deal
with looks like a sine or cosine function. Such waves are called harmonic or
sinusoidal waves, and are generated by oscillators moving in simple harmonic
motion. For example, if you hold one end of a rope and jiggle it up and down
in simple harmonic motion, you will generate harmonic waves. If you were
to take a picture of the waves, it would look like this:

Here x is the distance along the rope, and y is how far the rope moves
sideways as the wave passes through. The curve is the shape of the rope at
the instant the picture was taken.
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Like the wave pulse, a repeating wave has an equilibrium position (the loca-
tion of the rope when no wave is present) and an amplitude A. In addition
a repeating wave has two additional parameters. The first is the wavelength
λ which tells us how far along the direction of wave motion we have to move
before the wave looks exactly the same. The second is the period T which
tells us how long we have to wait until the wave looks exactly the same.
These have no analogue in the pulse-type wave because it does not repeat. A
nice way of summarising this is that the wavelength λ tells us how the wave
repeats in space, while the period T tells us how the wave repeats in time.

Notice that the picture of the wave above gives us no information about
the period. If we were to paint a red dot on the rope and then plot the
position of that dot against time we would find that particular point moves
in simple harmonic motion:

Watching a piece of the medium (x=2.5m)
(i.e. y(x=2.5 m,t) plotted against t)

y (in m)

t (in s)

Amplitude

Period T

Here T is the period of both the simple harmonic motion of the red dot of
the rope and the wave itself! Just like simple harmonic motion, the period
is the reciprocal of the frequency:

T =
1

f
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T is the time between the arrival of adjacent crests of the wave, while f is
the number of crests that pass by per second.

This is called a one dimensional wave because is moves only in one direc-
tion, here taken as the x-axis. To give examples of higher dimensional waves
we refer to the next section.

8-1-2-3 Dimensionality of the wave

We have already mentioned that a wave on a rope is a “one-dimensional
wave” because the wave only travels in one direction. If a wave spreads out
on a surface then we will define it as a two-dimensional wave. For example
a water wave spreads out on the surface of the water so is two-dimensional.
A wave that spreads out in all directions is three-dimensional. Examples of
three dimensional waves are (typical) sound and light waves.1

8-1-2-4 Polarisation

Material waves (and electromagnetic waves) have a characteristic called po-
larisation. The polarisation tells us how the displacements occur in the
medium. We are going to break the types of oscillations into two types:

• Transverse waves :
A material wave is transverse if the displacement from equilibrium is
perpendicular to the direction the wave is travelling. Note that if we
consider a wave travelling to the right of the page then both an oscilla-
tion in-and-out of the page or toward the top-and-bottom of the page
would both be considered transverse. An example of a transverse wave
on a spring is shown in figure 8-1.1.

• Longitudinal waves :
A material wave is longitudinal if the displacement from equilibrium
is in the same direction that the wave is travelling. An example of a
transverse wave on a spring is shown in figure 8-1.2.

1Technical aside: these are the definitions that we will use in Physics 7C, although
you should be warned that they are not universal. Some books would define a wave that
depends only on the distance from the source r as one dimensional, whereas we define it
to be three dimensional. However, once there is more than one source then typical light
and sound waves are thought of as three dimensional in anyone’s definition.
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Figure 8-1.1: A transverse wave in a spring. The horizontal line represents the
equilibrium position, and the displacement for the coloured coil is explicitly
labelled.

Figure 8-1.2: The spring in its equilibrium position (above) and a transverse
wave (below). The displacement from equilibrium y(x, t) can be found be
comparing the two pictures. Note that in this case y(x, t) is not vertical!

Test yourself:

Which of the following can be seen in figures 8-1.1 and 8-1.2: amplitude,
wavelength, period? Which cannot be seen on these pictures?

8-1-2-5 Wave speed and “riding the wave”

The wave speed vwave is the speed at which the disturbance propagates
through the medium. It is not the speed of the individual particles mak-
ing up the medium. One way of thinking about the wave speed is that it is
the speed someone who was “riding the wave” on a surfboard would travel.

To a good approximation the wave speed depends only on properties of
the medium, not on the size of the waves. (For very large waves this approx-
imation breaks down, but we will not be dealing with this in Physics 7C.)



8-1-3. HARMONIC WAVES 13

To a good approximation vwave does not depend strongly on the frequency
of a repeating wave either. We will simplify the discussion by ignoring any
dependence of wave speed on frequency until we discuss rainbows and light.

As an example of how the medium determines the wave speed we can
look at a material wave on a stretched medium. Both transverse waves and
longitudinal waves are possible on a stretched string or wire. The speed,
vwave, of transverse waves on a stretched string depends on the properties of
the string that affect its elasticity and its inertial properties. For a string
that is thin compared to its length, the relation connecting the wave speed
to the string properties is

vwave =

√
τ

µ

where τ is the tension in the string and µ is its mass per unit length. Notice
that this formula makes some intuitive sense with the picture we discussed
earlier. The tension is the (roughly) the force that one piece of string exerts
on another – the tighter the string the higher the tension. As we learned that
a material wave is a disturbance that propagates by one piece of the medium
exerting a force on its neighbours it makes sense that when the tension goes
up the wave speed also increases. When the string is particularly heavy,
the same force results in less acceleration so it also makes sense that as µ
increases the wave speed goes down. The ability to control the wave speed
is critical for stringed instruments like the guitar, which is why they have
tuning knobs at one end (to control τ) and the strings are of different size
(for different µ). We will discuss the guitar in more detail later when we
discuss standing waves.

Note that the speed is independent of the time and, if the string is homo-
geneous it is independent of position as well. Notice also that the wave speed
does not depend on how long the string is, nor the amplitude of the wave,
nor the frequency of the wave (if it is a repetitive wave) or the shape of the
pulse (if it is a pulse-type wave).

8-1-3 Harmonic waves

For the rest of the course we will focus on infinite repeating waves of a
specific type: harmonic waves. In a mechanical wave we represent the wave
mathematically as

y(x, t)− y0 = A sin

(
2π

t

T
± 2π

x

λ
+ φ

)
. (8-1.1)
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The left hand side (y(x, t)− y0) stands for the displacement of the “particle
that would be a distance x along the medium if the rope was in equilibrium
at time t”. Here y0 stands for the position of the medium if there was no
wave present at all, and y(x, t) is the actual position. On the right hand
side we have already seen the parameters A (the amplitude), T (the period),
and λ ( the wavelength) in §8-1-2-2. The parameter φ, called the fixed phase
constant is new and controls what the wave looks like when x = 0 and t = 0.
Finally ± means to choose either + or −, and controls the direction of the
propagation of the wave (i.e. whether the wave moves to the left or the right).
To see how this comes about, look at exercise Section 8-1, ex. #2.

Before going too much further, it is worthwhile noting the difference be-
tween variables and parameters.

• The parameters (A, T , λ, φ, y0 and the choice of a “+” or “−” sign)
are fixed for any given harmonic wave, and define the wave.

• The wave exists in all space (any x) forever (any t). We pick a specific
x and t to ask a question about the displacement of a specific piece of
the medium at a specific time. This distinction makes x and t variables.

We can ask about different locations and times by changing x and t, but the
parameters are fixed for the wave.

While we have framed this discussion in terms of material waves because
it is the easiest to visualise, we should be aware that the harmonic wave is
a much more general concept. It can apply to the variation in pressure (for
sound waves):

P (x, t)− P0 = A sin

(
2π

t

T
± 2π

x

λ
+ φ

)
. (8-1.2)

or the variation in electric field in light:

E(x, t) = A sin

(
2π

t

T
± 2π

x

λ
+ φ

)
. (8-1.3)

In general we can let y(x, t) stand for any of these physical quantities, not just
position. We shall refer to y(x, t) in this general form as the wave function.
Sometimes harmonic waves are also referred to as sinusoidal waves as the
wave function is a constant times the sine of an angle.
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While waves in the real world do not go on forever (and are created at some
initial time) we can still use these harmonic waves as a good approximation,
and they offer a considerable simplification. Next we introduce the concept
of total phase and show what the “+” and “−” signs do.

8-1-3-1 Total phase Φ

We can rewrite (8-1.1) in the following way:

y(x, t)− y0 = A sin Φ(x, t) (8-1.4)

where Φ(x, t) is the total phase of the wave and is defined by

Φ(x, t) = 2π
t

T
± 2π

x

λ
+ φ. (8-1.5)

This is useful because all the spatial (i.e. x) and time (t) dependence is in
the total phase. Once we know the total phase (from x and t) we can use
(8-1.4) to find the displacement from equilibrium.

Because the sine function is periodic with period 2π, changing Φ by 2π,
4π, . . . does not change y(x, t). This ambiguity exists partially because the
wave keeps repeating so that many places on the wave look exactly the same.
Let us try and make our example more concrete: because sin π

2
= 1 is the

maximum of the sine function Φ = π/2 labels a peak. Note that Φ = 5π/2
also labels a peak, but it labels a different peak. When we imagine ourselves
“riding the wave” we are really following a point of constant phase, as in the
next example.

Example #2:
We are going to look at the wave described by

y(x, t) = (25 cm) sin

(
2π

t

4 s
+ 2π

x

4 cm
+
π

2

)
a)
One of the peaks of the wave has a total phase Φ = π/2. What is the location
of this peak when t = 0, t = 1 s, t = 2 s, t = 3 s and t = 4s?
b)
Is the wave travelling to the left or right?
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Solution:
a)
We only need information about the total phase. The only useful information
we are given is

Φ(x, t) = 2π
t

4 s
+ 2π

x

4 cm
+
π

2

We are asked to find where (i.e. which x) Φ = π/2 is when t = 0. We can
solve this rather simply:

Φ =
π

2
= 2π

0

4 s
+ 2π

x

4 cm
+
π

2

which is only satisfied for x = 0. Therefore the Φ = π/2 peak is at x = 0
when t = 0. Substituting in the other values for t we find

Time t Peak Φ = π/2 located at . . .
0 s 0 cm
1 s −1 cm
2 s −2 cm
3 s −3 cm
4 s −4 cm

b)
We see that a particular peak goes from 0 cm to −4 cm. This peak is moving
to the left, as are all other parts of the wave.

We can see that the + sign in front of the spatial term is responsible for
this. If we remember that by “riding the wave” we are looking at a piece of
constant total phase Φ we can that as time increases

Φ︸︷︷︸
not changing

= 2π
t

T︸︷︷︸
increasing

+ 2π
x

λ︸︷︷︸
???

+ φ︸︷︷︸
not changing

.

The only way that the left hand side can remain unchanged is if the second
term decreases – i.e. the wave travels to the left.

Test yourself:

Go through exercise Section 8-1, ex. #2 using the − sign instead.
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8-1-3-2 The fixed phase constant φ

Note that the phase expression is very similar to the mathematical descrip-
tion we developed for the motion of a particle vibrating in simple harmonic
motion. The first term in the argument of the sine function, 2πt/T , is
exactly the same as we had for simple harmonic motion. The fixed phase
constant φ serves exactly the same purpose as there, to give the proper value
of y at t = 0 and x = 0. The only thing new is the term 2πx/λ . Note the
similarity of this term to the term involving the time. This term involving
x and λ gives the change in phase as we look along different values of x.
The (total) phase goes through a complete cycle of 2π radians each time x
increases or decreases by an amount equal to the wavelength λ. Likewise
the (total) phase goes through a complete cycle of 2π radians each time t
increases by one period T . This is a reminder that λ controls repetition in
space, while T controls repetition in time.

8-1-3-3 Relationship between vwave, λ and f

We have already learned in §8-1-2-5 that the speed of the wave depends on the
properties of the medium. When dealing with repeating waves we have three
additional parameters: the wavelength λ, the period T and the frequency f .
Note that only two of these are independent as we have f = 1/T . We will
go through two different arguments to show that the frequency, wavelength
and wave speed are all related by

vwave = λf. (8-1.6)

Distance over time

Our definition of speed from Physics 7B was speed = (distance travelled)/(time
taken). Let us look at the wave at a particular time, and focus on a particular
peak indicated by the solid dot.

λ

Recall that one period is the shortest amount of time before the wave looks
exactly the same. If the entire wave moves right one wavelength the peak
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indicated by the solid black dot must have moved one wavelength to the right
to the location of the dashed circle for the wave to look exactly the same.
We can now calculate the speed of the peak (which is the same as the speed
of the entire wave)

Distance peak travels = λ

Time taken = 1 period = T

vwave =
Distance travelled

time taken
=
λ

T

Using the fact that 1/T is another way of writing the frequency f , we can
write this formula in a more familiar form:

vwave = λf

If the wave is moving to the left this works also, the only modification to
the argument is that the “dashed circle” would sit one peak to the left of
the original peak shown. We would still get one wavelength travelled in one
period, so the speed is still vwave = λ/T .

Following the total phase Φ

A superficially different way of finding the wave speed is to follow a piece of
the wave, that is look at a piece of the wave with a constant total phase Φ.
We did this already in example Section 8-1, ex. #2. Let us pick a phase Φ
and look at it at two different times t1 (where it is at x1) and t2 (where that
piece of the wave is at x2). This gives us the relationships

Φ = 2π
t1
T
± 2π

x1

λ
+ φ

Φ = 2π
t2
T
± 2π

x2

λ
+ φ

Now we can subtract these equations from one another:

2π
t2 − t1
T

± 2π
x2 − x1

λ
= 0

or written another way

2π
∆t

T
± 2π

∆x

λ
= 0
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where we have used the ∆ for “final minus initial”. Cancelling the 2π and
rearranging we have

∆x

∆t
= ∓λ

T

But this expression tells us how far (∆x) the “disturbance” with phase Φ
moved in a time ∆t. This is exactly what we mean by velocity! Taking the
absolute value of this gives us the wave speed :

vwave =

∣∣∣∣distance travelled

time taken

∣∣∣∣ =

∣∣∣∣∆x∆t

∣∣∣∣ =
λ

T
= λf

8-1-4 Graphical representations of waves

Now one of the tricky things about the solution to the wave equation ex-
pressed in equation (8-1.1) is that it is a function of both space (the distance
along the x axis) and a function of time (the value of the time variable, t).
One way to make visualise the equation is to think of either x or t as being
fixed at some value, so that y depends one only one variable. This is exactly
what we must do in order to graph the function y(x, t) in a simple 2D graph.
We will describe these two graphs for the same example wave below.

• Holding t constant: “Displacement versus position”

This graph shows the displacement of the entire wave at a particular
time, thus the name “snapshot”. For a longitudinal wave (e.g. figure 8-
1.2) this graph does not really look like the wave, but for a transverse
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wave (e.g. figure 8-1.1) the name “snapshot” is apt. This graph is
correct even for longitudinal waves, even though it does not correspond
directly to a visualisation.

• Holding x constant: “Displacement versus time”

Watching a piece of the medium (x=2.5m)
(i.e. y(x=2.5 m,t) plotted against t)

y (in m)

t (in s)

Amplitude

Period T

This graph focuses on a particular piece of a medium and plotting its
motion against time. One way of visualising this is tying a ribbon to
a piece of the medium, and then plotting how the ribbon moves in
time. This graph reminds us that this particular piece of the medium
is undergoing simple harmonic motion.

To convey all of the information contained in equation (8-1.1), requires both
graphs. Alternatively, almost all of the same information can be conveyed
using two displacement versus position graphs for two different times, or two
displacement versus time graphs with each for a distinct position along the
hose.2

Test yourself:

Using the two graphs above, can you find the equation for the wave? You
should be able to get numerical values for all the variables except one – which

2The difference is that if we have two displacement versus position graphs (for example)
at different times, we don’t know for sure which peak in one graph has the same phase as
a particular peak in the other graph. This leads to some ambiguity in what the period
actually is. The case where there is no ambiguity is when we have a displacement versus
time graph and a displacement versus position graph.
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one can’t you determine? Hint: Which way is the wave travelling (left or
right)? You will need this to determine the + or − sign. Which parameters
do you get from which graph? Which parameters require both graphs?

8-1-5 Other types of waves

So far we have concentrated on waves that are movements of a medium. In
Physics 7B we discussed how an object close to equilibrium underwent simple
harmonic motion if the displacement was small (and the technical condition
that the equilibrium was stable). At the beginning of this discussion we
illustrated how a material wave arose: as pieces of the medium were displaced
they pulled or pushed on the next piece of the medium and even though
we only disturb one piece of the medium other pieces can be affected. This
travelling disturbance was what we referred to as the wave. Because for small
oscillations each part of the medium undergoes simple harmonic motion (as
we discussed in Physics 7B) it does not seem all that surprising that all these
different media can support waves.

You have probably heard the term “sound waves”. That is because sound,
like the material waves we have already discussed, is literally a wave in the
sense that we have already described. In this case the medium is the material
the sounds travels through. Often this is the air, but sound can also travel
through liquids and solids. As we discussed in Physics 7A the bonds between
particles in the air are virtually non-existent, so it is difficult to think of
the air molecules as having an equilibrium position. Instead, as we discuss
shortly, we tend to think about sound as a pressure wave. While this is
slightly different in form from the material waves we have already discussed,
we can apply almost all of the same techniques that we have already learned
to sound waves. Fundamentally, however, sound waves are just material
waves in a medium and so we may not be surprised that the same techniques
work.

Later on in the course we will also discuss light and quantum particles. In
each of these cases we have “waves” that have no medium, and so are not
propagated along by forces pulling and pushing a material. Why do we call
them waves then? The answer is that these light and quantum waves exhibit
much of the same behaviour as the material waves we are currently discussing.
In this unit we will show how to combine material waves (interference), talk
about how material waves travel (diffraction and geometric optics). The light
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and quantum waves have these properties too! We take the view that we will
use material waves to build up our intuition, and then define a general wave
as anything that has similar behaviour to the material waves we have come
to know.

A wave model of sound

We can choose to model sound in two different ways. The first model is that
the individual molecules that make up the air are vibrating back in forth
in the direction of propagation. That is, sound waves are longitudinal. We
know that the position of an air molecule is described by (8-1.1), but now
y(x, t) does not tell us the height of the particle (as it would for a transverse
wave) but tells us how the displacement of the particle from its equilibrium
position.3 This is illustrated in figure 8-1.2. We have already learned while
discussing material waves how to model such waves, and in this sense sound
waves are simply longitudinal material waves.

There is a separate way of thinking about sound waves. Instead of fo-
cussing on the position of the air molecules (which is difficult to measure
experimentally) we can instead measure either the density or pressure of the
air. Recall from what we learned in Physics 7A that in a room in equilib-
rium the air molecules are in random motion, moving around rapidly, but
there are well defined averages for density and pressure. Sound waves in air
involves the oscillation of the average value of particle density (and resulting
pressure) over distance scales much larger than the mean distance between
particles. Thus we can also choose to describe a sound wave in terms of
either the pressure or density of the air. Choosing pressure, we can describe
sound by

P (x, t) = A sin

(
2π

T
t± 2π

λ
x+ φ

)
+ Patm (8-1.7)

where P (x, t) is the absolute pressure of the air at a given position x along
the tube, and at a time t. Patm is the equilibrium pressure (i.e., atmospheric
pressure), and A is the amplitude of the pressure fluctuation (gauge pressure)
from equilibrium.

3This contradicts the statement we made on the previous page that the atoms are
zooming around and don’t have an equilibrium position. The previous page is correct,
but the motion of the molecules is random and does not contribute overall. We can get
a good description of sound by treating the air molecules as vibrating back and forward,
but the pressure description described below is a better “fit” to reality.
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Note the similarity between this equation and the equation (8-1.1) for
y(x, t). We can use the same techniques to plot the pressure against time at
constant position, or pressure against position at constant time.

8-1-6 Summary

A detailed summary of the properties of waves and the types of waves they
apply to are summarised in table 8-1.1. Notice that all of these properties
apply to harmonic waves, except polarisation for some special types of waves.
The main concepts from this chapter, in addition to the terms defined above,
are:

1. A material wave is a propagating disturbance in a material, while the
atoms that make up that material do not travel very far.

2. Waves describe a large range of phenomena such as ripples in a medium,
pressure fluctuations in sound or even fluctuations that describe light.

3. The idea of a wave function y(x, t) that describes displacement, or
pressure, . . .

4. Harmonic waves which have a wave function given by

∆y = y(x, t)− y0 = A sin Φ(x, t)

where y0 is the equilibrium value of y(x, t) and Φ is the total phase.

5. The wave function and the total phase are functions of space and time;
knowing only one is not good enough.

6. Two common representations of waves: y(x, t = const) vs x or y(x =
const, t) vs t and what these graphs physically correspond to.

7. The wave speed vwave is set by the medium.

8. The frequency f is set by the source.

9. The wavelength depends on both the frequency and velocity: λ =
vwave/f .

Almost all of physics 7C builds upon the main ideas presented above, so
make sure you have a solid grasp of them!
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Property Applies to Description
Amplitude A All waves The maximum displacement from equilibrium.
Speed vwave All waves The speed at which a disturbance moves.
Dimensionality All waves - 1-D: wave travels along a line (e.g. waves on

a rope).
- 2-D: wave spreads out over a surface (e.g.
water waves).
- 3-D: wave spreads out over space (e.g. sound
waves).

Direction All waves Direction the wave travels. Determined by the
+ or − sign for 1-D waves.

Polarisation Most waves - Longitudinal: vibrations in the direction of
wave propagation.
- Transverse: vibrations perpendicular to the
direction of wave propagation.

Period T Repetitive Time taken for wave to look exactly the same.
Frequency f Repetitive f = 1/T
Wavelength λ Repetitive Shortest distance along the wave before the

wave looks exactly the same.
Fixed phase φ Harmonic Sets conditions when t = 0 and x = 0.
Total phase Φ Harmonic

Table 8-1.1: A list of wave properties and the types of waves they are as-
sociated with. Notice that harmonic waves are a special case of repetitive
waves.

8-1-7 Exercises

1. The following questions relate to the wave shown below:

-20

-15

-10

-5

 0

 5

 10

 15

 20

-2 -1  0  1  2
Distance (m)

Displacement (cm)

(a) A “snapshot” of a wave at t = 0 is taken and shown above. What
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is the phase constant if the wave is travelling to the right? What
is the phase constant if the wave is travelling to the left?

(b) Using the same snapshot, what is the amplitude if the wave is
travelling to the right? What is it if the wave is travelling to the
left?

(c) What can you tell about the wavelength by looking at this graph?
What about the period? Do these depend on whether the wave is
travelling to the right or left?

2. Two ropes of different densities are tied together to form a long rope.
We are going to create a continuous wave by moving one end of the
rope in simple harmonic motion. For each of the statements, is the
answer true or false?

(a) The wave speed vwave must be the same in both ropes.

(b) The frequency f must be the same in both ropes.

(c) The wavelength λ must be the same in both ropes.

(d) The amplitude A must be the same in both ropes. (Tricker, not
directly covered in notes. Think of an extreme limit of a string
rope and a steel cable.)

3. Why is a mass on a spring not a wave? Which parameters does it have
in common with a harmonic wave? Which make sense for a harmonic
wave but do not make sense for a mass on a spring?
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Unit 8:

8-2: Superposition and
Interference

8-2-1 Overview

So far in the course we have discussed how a source could create a wave
pulse, a repeating wave or a harmonic wave. By knowing the motion of the
source, we have seen that the disturbance keeps its shape and propagates
with a speed vwave.

1 These discussions all assumed that the medium was flat
before the wave propagated – what if there was another wave already in the
medium? What happens when the two waves collide?

An example of how this could occur is if you and a friend both hold a
rope. If you wiggle your end, the wave you make will propagate toward your
friend. If your friend propagates her end, her wave will propagate toward
you. What happens when your waves collide?

What happens when
these waves collide?

A different example is dropping two stones in a river. Eventually the ripples
will overlap; how can we calculate the displacement from equilibrium?

1Strictly this is only true if the speed of the waves does not depend on frequency. We
emphasised earlier that vwave does not depend on f to a good approximation. We will
have to deal a situation where vwave depends on f when we discuss rainbows later.

27
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The solution to this problem is to do the following: consider each displace-
ment from equilibrium separately. For each piece of rope add (as a vector)
the displacement for each wave. This “combined displacement” will be the
total displacement for that piece of rope. This procedure is valid provided
the amplitude of the wave is small. For example, if your friend’s wave would
have caused a particular piece of the rope to rise 2 cm, and your wave caused
the same piece of rope to rise 1 cm, the actual amount that piece of rope will
rise is 3 cm. The idea of adding the individual effects of waves to get the
total effect is called superposition. With the exception of some information
on phase changes and reflection in §8-2-5-1, the idea of superposition is the
only new piece of information in this entire section. The rest of this section
is devoted to the implications of superposition.

8-2-2 The idea of superposition

In the overview we gave the general idea of superposition, in this section we
will simply be making that idea more precise and introducing some of the
language used discussing superposition. Superposition is the idea of adding
the effects of two (or more) waves together at the same location at the same
time. This gives us the total effect of the two waves. It makes no sense to
add what happens due to a wave at one location to what happens to a wave
at another location.

For material waves, we can replace the word “effect” with the word dis-
placement, although the principle of superposition works for non-material
waves (such as electromagnetic waves, the pressure interpretation of sound
and matter waves). For the time being, let us concentrate on material waves.
We express superposition mathematically as follows:

∆ytot(x, t) = ∆y1(x, t) + ∆y2(x, t)

where ∆y1 and ∆y2 are the displacement from equilibrium for wave 1 and
wave 2 only. The actual displacement of the medium is described by ∆ytot.
We illustrate this procedure in figure 8-2.1.

Conventions on space and time

Some of our conventions are useful, but a little confusing at first. We have
emphasised already that superposition is combining two or more waves acting
at the same location at the same time. But so far we have dealt only with
single source systems, and we have always chosen the origin of our coordinates
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y1

y2

ytotal = y1 + y2

Figure 8-2.1: Illustrating superposition. We add the waves represented by
∆y1 and ∆y2 to get the superposed wave shown in the bottom picture.

1 2

X

Superpose the two 
waves here

x1
x2

Figure 8-2.2: To figure out the wave at the point labelled “x” we add the
effect of the wave from source 1 to the effect of the wave from source 2 at the
location “x” at the same time.

to be the location of the source. What do we do if we wish to combine the
effects of the two sources (indicated by circles) at the location of the “x” in
figure 8-2.2? To keep as close as possible to the work we have already done
on waves, we adopt the following conventions:

• We use a universal clock t. As we are combining the effect of the two
waves at the same time, we should use the same value t in ∆y1 and
∆y2.

• We use a different origin for each source. Even though we are combining
the waves at the same location, we have two distances x1 and x2. Here
x1 is the distance between source 1 and where we wish to combine
the waves; an analogous definition holds for x2. We would use x1

for calculating ∆y1 and x2 for calculating ∆y2 even though we are
interested in the same point.

When we are using a sinusoidal wave we also need a convention for φ1 and
φ2, the phase constants. The convention we use here is that φ1 determines
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what the source is doing (i.e. x1 = 0) at t = 0. Analogous comments hold
for φ2.

The reason that we use these particular conventions, rather than just pick-
ing one origin, is that it allows us to keep the formulas

∆y1 = A1 sin

(
2πt

T1

±1
2πx1

λ1

+ φ1

)
∆y2 = A2 sin

(
2πt

T2

±2
2πx2

λ2

+ φ2

)
that we are so used to when we specialise to sinusoidal waves in §8-2-3. (Here
±1 and ±2 refer to the direction of propagation of wave 1 and 2 respectively,
and are independent.)

There is one more convention that is worth noting: we treat xi as a positive
distance from the source. For a wave that travels outward (this is almost
always the case) we would use the − sign. This is because the peak of a
wave (for example) gets further away from the source as time increases. We
would only use the + sign when waves were travelling inward. The following
illustration may help with the change from what we did in the first section:

The vocabulary of interference and superposition

While the idea of superposition is fairly straightforward, there is a lot of
associated vocabulary that comes with it. Intuitively we can see that if two
waves are oscillating up and down together that the resulting oscillations
from combining the two waves will be larger. This is called constructive
interference. On the other hand, if one wave is going up while the other
is going down then the two waves are cancelling each other out. This is
known as destructive interference. If the waves are the same amplitude,
then these waves will cancel each other out completely! It is also possible
that waves are neither completely in step or out of step, which we refer to as
partial interference. Partial interference is not very descriptive – we can have
partial interference that is either almost constructive or almost destructive.

The experimental status of superposition*

Because simply adding the waves together is the most obvious thing to do, it
is worth pausing and considering if it is the only way we could have combined
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the effects of two waves. The answer is “no” – we could have combined the
waves in much more complicated ways. For very large water waves or sound
waves we cannot simply use the principle of superposition presented here.
Shockwaves, such as the ones produced by explosions or sonic booms, are
examples of waves for which the principle of superposition simply does not
work.

We are lucky that for “small” waves the principle of superposition is ade-
quate. But it should be appreciated that this is an experimental result, and
not one that can be derived from purely logical thought.

8-2-3 Specialising superposition to harmonic

waves

While the idea of superposition is relatively straightforward, actually adding
the displacements of the waves at every point for all time is a lot of tedious
work. We are now going to specialise to the case where we are dealing with
infinite sinusoidal waves. Instead of keeping track of both the wavefunctions
∆y1 and ∆y2 this means that we only have to look at the difference in total
phase ∆Φ.

For example if we know that at a particular location the peaks of both
waves arrive simultaneously, and the troughs of both waves are occurring
simultaneously then we would say the waves are in phase. Our obvious guess
would be that ∆Φ ≡ Φ2 − Φ1 = 0 because the peaks and the troughs are
arriving together. However we know that if the total phase changes by 2π, 4π,
6π, . . . that the wave looks exactly the same – a fact that can be traced back
to the fact that the sine function repeats every 2π. If we have constructive
interference all we know is that ∆Φ = 0 or 2π or −2π or 4π or . . .

To see how ∆Φ tells us about the type of interference it helps to recall two
important points about the sine function:

• The sine function is periodic so that sin(Φ) = sin(Φ + 2πn) where n is
any integer. This is the point being made in the paragraph above.

• sin(Φ + π) = − sin(Φ), or that half a period along the sine function
changes sign (but has the same magnitude). By mathematical induc-
tion the same result holds if we replace π by 3π, 5π, 7π, . . .
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The total displacement we can find by looking at

∆ytotal(x, t) = A1 sin(Φ1) + A2 sin(Φ2)

When the sines are the same (i.e. ∆Φ = (even) × π) we have constructive
interference, when the sines have opposite signs (i.e. ∆Φ = (odd) × π) we
have destructive interference. Anything else is partial. This table summarises
the types of interference condition you can get:

Interference type ∆Φ
Constructive (even) ×π
Destructive (odd) ×π
Partial (non-integer) ×π

Recall that the total phase Φ(x, t) for each wave depends on both x and t, so
∆Φ can depend on both x and t. Strictly speaking we should not talk about
whether two waves have constructive, destructive or partial interference, but
rather if two waves at a specific location, at a specific time, have constructive,
destructive or partial interference.

To keep track of all the terms that can contribute to the change in phase,
we introduce the phase chart . The phase chart contains no more information
than the three equations

Φ1 = 2π
t

T1

± 2π
x1

λ1

+ φ1

Φ2 = 2π
t

T2

± 2π
x2

λ2

+ φ2

∆Φ = Φ2 − Φ1,

but is meant to remind you to think about each term. The phase chart is
shown below:

2π t
T
±2π x

λ
φ Φ

Wave 1 ← add first three columns
Wave 2 to fill in last column
Change ∆Φ

↑ ↑ ↑ ↑
Find bottom row by subtracting 2nd row from 1st

It is the lower-right hand corner of this chart in the box marked ∆Φ that
determines if the interference is constructive, destructive or partial.
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To build our intuition we are going to look at simplified examples and
study the effect of each piece. In the next three subsections we will study:

• The effect of spatial difference: By keeping the sources creating
waves in phase and at the same frequency, we can study what the
effect is of moving the detector around.

• The effect of spatial difference and changing the sources: By
keeping the same frequency and amplitude, but now allowing the sources
to create waves that are not in phase we can study how out of sync
sources affect interference.

• Beats: Looking at the interference of two waves with different frequen-
cies.

There are a couple of other general comments to make. The first is that
because we are combining waves in the same place, the waves must be in the
same medium. Therefore the two waves have the same wave speed vwave. Be-
cause they have the same wave speed and same frequency, they must have the
same wavelength λ = vwave/f . The periods of the two waves T = 1/f must
also be the same. The quantities which may be different are the distance from
the source to the detector x, and the phase constant φ. By changing either of
these quantities we can have either constructive or destructive interference.

8-2-3-1 Path length difference

For this part of the notes we will assume that the two waves are at the same
frequency and have the same amplitude. We are also going to assume that the
two sources are in phase with one another. The most important assumption
is that the frequencies are the same, and we should discuss the consequences
of this assumption before doing anything else. By having the same frequency
we know that the waves both have the same period (T = 1/f). Thus, if the
waves started oscillating “in phase” at a particular location they will always
be oscillating in phase because they are both oscillating at the same rate.
Likewise if they started oscillating “out of phase” they will remain out of
phase. One way of summarising this is that assuming the frequencies are the
same means the type of interference depends on where you are, but unlike
the completely general case does not depend on when you ask about the type
of interference. To see this from the phase chart we notice that the two terms
containing time are exactly the same, so the time part does not contribute
anything to the change in total phase:
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2π t
T
±2π x

λ
φ Φ

Wave 1 2π t
T

Wave 2 2π t
T

Change 0 ∆Φ

As both our waves are travelling in the same medium we know that vwave =
fλ is the same. Because the frequency is the same and the speed vwave is
the same both sources must have the same wavelength λ. As we can see,
assuming that the sources produce waves of the same frequency leads to a
large simplification.

Let us start with two sources that are creating waves in phase with one
another, and located the same distance from the detector. A picture of the
situation may look like the one below:

2

1

Detector

∆x = x1 − x2 = 0

x1

x2

By adding these waves together we see that the total wave will have twice
the amplitude at the detector – this is constructive interference. The waves
at the detector look identical if we shift one of the sources one wavelength
closer to the detector; this is because after one wavelength the wave looks
exactly the same.

1

Detector

2

∆x = x1 − x2 = λ

Shifting the source by additional whole numbers of wavelengths still leads to
constructive interference, as the waves still look identical after shifting:

1

Detector

2

..... (Many wavelengths) ....

..... (Many wavelengths) ....

∆x = x1 − x2 = nλ, (n integer)
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The idea that shifting by a whole wavelength not changing the shape of the
wave is intuitive, but how does it relate to the change in phase? Assuming
both waves are propagating outward (so we may use the − sign) we have

∆x = x1 − x2 = nλ, (n an integer, number of wavelengths shifted)

∆Φ = −2π
∆x

λ
+ ∆φ

= −2π
nλ

λ
+ 0

= −(2π)n.

In the third line we used the fact that the sources were in phase (meaning
that they were creating peaks together, and creating troughs together) so
∆φ = 0. The quantity ∆x tells us how much further wave 1 had to travel to
reach the detector than wave 2, and is referred to as the path length difference.

By shifting one of the sources half a wavelength closer to the detector,
we ensure that every peak in wave 1 coincides with a trough in wave 2. In
fact, the waves added together completely cancel each other out and we have
destructive interference:

1

Detector

2

∆x =
λ

2

Changing the separation by a wavelength (i.e. so the total separation is one
and a half wavelengths) does not change what the waves look like at the
detector, so we still have destructive interference.

1

Detector

2

∆x = 1.5λ

In fact, it is not difficult to see that having (n + 1/2)λ as the path length
difference will lead to destructive interference. To see this is consistent with
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the phase difference picture we calculate ∆Φ:

∆Φ = −2π
∆x

λ
+ ∆φ

= −2π

(
n+ 1

2

)
λ

λ
+ 0

= −2π

(
n+

1

2

)
= −2πn+ π = (odd)π

Note that ∆φ = 0 still, as the waves are still creating peaks (or troughs) at
the same time as one another. By having different separations we can create
the waves in phase (we say the sources are in phase) but have destructive
interference when the two waves come together.

It is important to distinguish the separation of the sources and the path
length difference. In all of the above examples, these are the same. Consider
two sources separated by half a wavelength, but place the detector equal
distances from both sources:

1 2

x

λ

2

∆x1 ∆x2

Using vector subtraction:|∆x1 −∆x2| = λ/2
Path-length difference: |∆x1|− |∆x2| = 0

Now even though the sources are separated by λ/2, the wave from each source
must travel exactly the same distance to get to the detector. Therefore the
path length difference is zero – peaks created at the same time will arrive at
the same time and we still have constructive interference. Even though we
can think of ∆x as a vector quantity as we did in Physics 7B we don’t want
to – the only thing of interest is how far the waves travel from there source.
From here on we shall dispense with the absolute value signs.

8-2-3-2 Constant phase differences

Another way of changing the total phase is ensuring that the two sources are
not creating peaks together. This is done by manipulating φ1 and φ2, the
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phase constant. To keep things simple we are again going to assume that
the frequencies (and hence the wavelengths) of the waves produced by the
two sources are the same. If we start with two sources in the same location,
but make one source create a trough while the other source creates a peak
we have destructive interference at the location of the detector:

1

Detector

2

We call these two sources “out of phase”. ∆φ = π.

We can combine the two effects shown above. Let us have two sources
“completely out of phase” (∆φ = π) so that source one is creating a peak
while source 2 is creating a trough. In addition, we will place source 2 half a
wavelength ahead of source one as shown:

1

Detector

2

∆x =
λ

2

8-2-3-3 Using phase charts

Let us see how we can reproduce some of the results we had earlier. Let us
look at the case were we had the two sources in phase (φ1 = φ2 ≡ φ), but
the sources were separated by one wavelength:

1

Detector

2

∆x = x1 − x2 = λ

For the two phases we have

Φ1 = 2π
t

T
− 2π

x1

λ
+ φ

Φ2 = 2π
t

T
− 2π

x2

λ
+ φ

Because these waves have the same frequency they have the same period
(T = 1/f), and because they are travelling in the same medium they have
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the same vwave and hence the same wavelength (λ = vwave/f). The difference
in phase is

∆Φ = Φ1 − Φ2 = 2πt

(
1

T
− 1

T

)
− 2π

λ
(x1 − x2) + (φ− φ)

= −2π

λ
∆x

By looking at the figure above, we see that ∆x = λ, so that ∆Φ = −2π
giving us constructive interference. Of course, the easy way of doing this
problem would be to look at the waves at the detector – they are obviously
in phase so the interference must be constructive!

As a second example, let us consider the case where the two waves were
out of phase and separated by half a wavelength as shown:

1

Detector

2

∆x =
λ

2

This time we have φ1 − φ2 = π, and x1 − x2 = λ/2. The change in phase is

∆Φ = 2πt

(
1

T
− 1

T

)
− 2π

λ
(x1 − x2) + (φ1 − φ2)

= 2πt(0)− 2π

λ

λ

2
+ π

= 0− π + π = 0

which gives us constructive interference again.

In order make sure that you include every term in the phase difference,
you may find a phase chart useful.

8-2-3-4 When phase charts fail*

The phase chart is a slight oversimplification of what occurs in the real world.
For example, consider two sources are in phase, but separated by 2.5 wave-
lengths:
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1

Detector
2

∆x = 2.5λ

We see that we get destructive interference just as we expect. Keeping the
same separation, but inserting another medium (shown in blue) leads to a
shorter wavelength in that medium

1

Detector

2

Same distance as above

Now the waves are back in step. Notice that at the detector the wavelengths
are identical: λ1 = λ2. The assumption that we are making in using the phase
chart is that the two waves have the same wavelength between the source and
the detector. We can get rid of this assumption by carefully keeping track of
the phase from one medium to another, i.e. using the equations directly and
disposing of the phase chart.

Is this objection relevant to any real world examples? Yes! The subject
of thin-film interference is based around light interfering, where one ray goes
through two mediums and the other ray only goes through one. Thin film
interference is responsible for the pretty colours we see on soap bubbles and in
puddles on the street where small amounts of oil sit on the surface. Thin film
interference is also responsible for the different colours that are seen reflecting
in the surface of pearls (the layers are calcium carbonate and water). Thin
film interference finds important applications in photography as well.

8-2-4 Beats

So far we have dealt with waves of the same frequency, which leads to a
significant simplification: if the waves are in phase, then because they are
oscillating at the same rate they stay in phase. We then get constructive
interference all the time. Similar comments hold if we have the two waves
producing destructive interference. The way this arises mathematically is
that the “time term” 2πt/T is the same for both waves and so contributes
nothing to the change in total phase, so the type of interference we get is
independent of time.
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What if the frequencies and periods are different? Consider an example
where one wave has a period of 5 seconds, and the other has a period of
6 seconds, and we measure the displacement of the medium at a particular
location against time. After 5 seconds, one wave has completed a cycle, but
the other has not. If they started in phase (giving constructive interference)
they are now not quite in phase so the interference is only partial. After 15
seconds, one of the waves has completed 3 cycles (5 s × 3 = 15 s) but the
other wave has only completed 2.5 cycles (6 s×2.5 = 15 s). If the waves were
constructive initially, they are now destructive! The fact that the type of
interference leads to constructive and then destructive interference is termed
beats . This comes from the fact that in sound the amplitude is going from
large at constructive interference (and hence loud) to small at destructive
interference (and hence soft).

Now that we have described what we expect to see, let us actually plot
out two waves and add them together. Recall we are taking two waves that
reach the same location, then plotting ∆y against time.

Time

Time

Time

Constructive
(A)

Destructive
(B)

Partial
(C)

Superposition of waves of different frequencies

Wave #1

Wave #2

Combined 
Waves 
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The dashed vertical lines emphasise that we are adding together the displace-
ment caused by wave 1 to the displacement caused by wave 2 at the same
time. Remember that throughout this section, this is the only idea that we
are using!

Let us make a few comments about this graph. We can see that the waves
go gradually from in step to out of step and back again (the vertical dashed
lines at points A, B and C can serve as a guide to your eyes). The dashed
line around the outside of the two curves roughly tells us how far in step
or out of step the two waves are. If the two wave frequencies are f1 and f2

then the waves go from constructive to destructive and back to constructive
|f1 − f2| times per second. We call this the beat frequency :

fbeat = |f1 − f2|, # constructive to constructive cycles per second

There is also a beat period Tbeat = 1/fbeat which is simply the amount of time
between consecutive constructive interferences.

The other feature of this graph is that as well as the variation in the
amplitude, we still have a quicker oscillation. The frequency of this oscillation
is called the carrier frequency, and it is the average of the two frequencies:

fcarrier =
f1 + f2

2

If we are listening to sound, the carrier frequency determines the pitch (i.e.
note) that is heard. If we are dealing with electromagnetic waves, the carrier
frequency determines the colour that is seen (or not – depending on whether
or not fcarrier lies in the visible spectrum!)

’

8-2-5 Standing waves

Thus far we have restricted our discussion of waves to waves that travel. In
all our examples until this part, one could follow the location of a maximum
and observe it moving (to the left, or the right, or outward, for instance).
Another important class of waves exist called standing waves. For a standing
wave, the position of the maximum and minima do not travel, but remain in
place. You may have noticed standing waves when you wiggled one end of a
string, slinky, rope, etc while the other end was held fixed.
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We will begin our discussion of standing waves by noting what occurs ex-
perimentally when standing waves form. Initially, it may be unclear why
standing waves fit into our wave unit. After all, in §8-1-1 we emphatically
emphasized that waves required propagation of a disturbance. Once we es-
tablish the idea of standing waves, we will use our model of interference to
make sense of them.

8-2-5-1 What is a standing wave?

In the most general sense, we have already defined a standing wave as a wave
that does not travel. How do these waves come to exist? Imagine you have
a string attached at both ends that is under tension, like a guitar string. If
you try to vibrate it at a particular rate, you may or may not be successful
depending on the frequency you choose. At most frequencies, the wave you
start will travel to the one end intact, but upon reaching it the shape of
the wave distorts and overall the string no longer appears to carry a wave.
Nowhere will the string displace very far from equilibrium. Only at certain
frequencies will you see a sizeable displacement. If you begin vibrating at an
extremely low frequency and gradually increase the frequency, the first place
the string response will result in a wave like

Each of the seven lines in the image is like a photograph of the string at a
particular instant. As you know from §8-1-4 this is equivalent to a displace-
ment versus position graph of the string, at seven different times. Notice
that the displacement at both ends is zero. This makes a great deal of sense,
because both ends are attached and thus cannot move. We will call any part
of a standing wave that experiences no displacement over time a node. Also
notice there is one spot in the middle that experiences maximal displace-
ment at each time. Any spot that exhibits this behaviour will be called an
antinode.



8-2-5. STANDING WAVES 43

If we increase the frequency of our vibrations, we will lose the wave shape
for awhile. The next three frequencies resulting standing waves are shown
below, along with the frequency we already discussed.

L

L

L/2

L/2

L

L

L/2

L/2

λ/2λ/2

λ/2 λ/2λ/2

λ/2λ/2 λ/2

In each image, the arrows highlight a distance of a half wavelength. If we
use L to denote the length of the string, then for the first frequency,

λ = 2L

because only half of a wavelength fits on the string. For the second lowest
frequency,

λ = L,

since an entire wavelength fits on the string. Similar relationships can be
established for n = 3 and n = 4. In general, for waves on a string that are
attached at both ends,

λ = 2L/n.

Here, the various n specify which harmonic we are discussing. The lowest
harmonic, with n = 1, is called the fundamental.

We have now developed a relationship between harmonic (n) and wave-
length (λ). If we knew the wave speed on the string, we could determine the
frequency we have produced using

vwave = λf.

Because frequency does not change between media, whatever frequency is
produced on the string is reproduced in the air and eventually makes it into
our ear. It is the frequency that we hear as a particular note. To make sure
the instrument plays the correct note (i.e. frequency) a musician must first
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tune the instrument. To do this the musician can change the tension that
the string is under (which adjusts the wave speed as discussed in §8-1-2-5).
While playing the guitar a guitar player chooses different notes by putting
fingers on the fretboard, which changes the available length of string to fit the
wavelengths on. In general, musical instruments produce many harmonics
when playing any particular note. When we name the note the instrument
plays as a single frequency, such as 440 Hz, we refer to the fundamental
frequency. The different combinations of harmonics give instruments different
sounds, allowing people to differentiate between pianos, guitars, and violins
even though all three instruments are stringed.

We have now explored standing waves with both ends attached in some
detail. A similar analysis could be done for standing waves with only one
end attached and the other end free. In this case, the attached end will still
behave like a node, but now the free end will behave like an antinode. For
instance, only one quarter (λ/4) of a wave will fit along the length of the
string for the fundamental frequency.

Test yourself:

Draw the first four harmonics for a wave with one end attached and one end
free. Can you determine a general relationship between the string length and
the wavelength?

Applying the interference model

Now that we have some sense of what standing waves are, it is time to
make sense of them. There are two independent ways of making sense of
this phenomenon in terms of the interference model. We will explore both
briefly. Both methods involve waves travelling down the medium in opposite
directions and interfering along the way.

Reflection at the boundary
First, we will that we send a continuous wave down our medium, it hits the
boundary at the end, and reflects. We now have two waves in the medium:
1) the wave we are originating, and 2) the reflected wave. The two waves
will have the same frequency, as that is determined by the source. They will
also have the same wavelength, since both waves travel in the same medium.
Because the waves travel in opposite directions, they have different signs in
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front of the position time. Mathematically, we have

y1(x, t) = A sin

(
2πt

T
− 2πx

λ
+ φ1

)
y2(x, t) = A sin

(
2πt

T
+

2πx

λ
+ φ2

)

Notice that we left subscripts on the phase constant term, φ. When the wave
hits the end of the medium, two different things can happen to the phase
constant. In one case, called a soft reflection, the phase constant remains
unchanged and φ2 = φ1. In the other case, called a hard reflection, the phase
constant of the reflected is completely out of phase with the phase constant
of the incoming wave, so φ2 = φ1 + π.

Example #1:
Determine if reflection at the free end of a rope is a hard reflection or a soft
reflection.

Solution:
To visualise the phenomenon better, let’s first sketch the situation. We
could choose any harmonic, and any behaviour for the other end we want.

The sketch chosen shows the fundamental with one end attached and one end
free, at five different times. At the free end of a rope, there is an antinode.
At some specific times, the free end has a maximal displacement. In general,
at any given instant in time, the free end has more displacement than any
other part of the rope. We will keep this in mind.
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As with any interference problem, there are three terms to consider that
might cause interference.

1. The time term. In this case, the waves in question have the same
period. There will be no total phase difference contribution from the
time term.

2. The spatial term. We are examining the wave just as it turns around.
Neither wave has travelled further than the other wave. There will be
no total phase difference contribution from the spatial term.

3. The phase constant term. We seek to determine what the phase con-
stant might be. We know the choices for ∆φ are 0 (soft reflection) or
π (hard reflection).

At this point, we know that the interference at the free end is entirely from
the difference in phase constant, so ∆Φ = ∆φ. We either have ∆Φ = 0 or
∆Φ = π. In the first case, we would have constructive interference, and in the
second case destructive interference. Clearly we are not seeing destructive
interference, but we are seeing constructive. Thus, the reflection at a free
end must be a soft reflection with ∆φ = 0.

A few points from the example above are worth reiterating and expand-
ing. The free end of a rope, an antinode, is a location of a constructive in-
terference. This location has constructive interference for all times. Though
the rope itself alternates between a maximum, flat, and a minimum, the in-
terference is always constructive. This might seem counterintuitive at first
(constructive interference and zero displacement?!), but please turn back to
the sketches of interference from speakers in §8-2-3-1. There are several places
where the displacement of both waves is zero (total phase Φ = 0 or 2π etc.),
so the total displacement of the sum is also zero. Nonetheless, this is a spot
of constructive interference.
Infinite interference waves
There is a second way to apply the interference model to understand standing
waves. In this case, we do not imagine any reflections, so do not need to worry
about whether a boundary change is ‘hard’ or ‘soft.’ Unfortunately, it is a
bit more abstract.

Imagine there are infinite waves travelling in opposite directions. Although
we will be thinking about a small section of medium, like a length of string,
we imagine that the waves extend beyond the medium in question. Through-
out all of space, these waves are interfering. Their interference is like a giant
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standing wave in all space that has nodes and antinodes in every direction,
with no ends. To use this idea, we think about the particular type of inter-
ference we have (like both ends fixed, or node-node interference). We then
take only the portion of the total interference pattern we need, apply this to
our specific phenomenon, and ignore the rest.

8-2-6 Two-slit interference

When a wave passes through a wide slit, the pieces of the wave that hit the
boundary stop, but the rest of the wave goes through unaffected. This effect
is responsible for the shadows that we see – objects abruptly stop light, and
leave a dark region. When the slit is smaller than or roughly the same size
as the wavelength, something interesting happens. Instead of waves passing
straight through the gap in the boundary, the wave travels outward. The key
point is that (at least for slits that are much smaller than the wavelength of
the wave) the slit acts like a source of waves in the region past the barrier.

If we have two slits in a screen we can get interference from the waves
coming from one slit interfering with the waves coming from another slit. To
figure out the sort of interference we get, we simply need to use the phase
charts that we have already introduced. The most common situation we will
discuss is one in which a single waves hits two slits at different points.

d
1 2

Detector

d

x1 x2x1 x2

Detector

We can treat this situation like two sources with the same separation, but
this special setup gives us two extra advantages:

1. Because both of these slits have the same wave reaching them, we know
that the frequencies are the same.
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Figure 8-2.3: An example of light passing through a wide slit on the left,
and a narrow slit on the right. Here wide or narrow are comparisons to the
wavelength of light. The lines represent the peaks of the waves.

2. In this special case we have the peaks arriving at the slits at the same
time. Hence we can treat the two “sources” as having the same constant
phase φ. (This would not necessarily be true if we placed the screen
with the two slits at a different angle).

For this special case, our phase chart is

2π t
T

±2π x
λ

φ Φ
Wave 1 2π t

T
−2π x1

λ
φ

Wave 2 2π t
T

−2π x2

λ
φ

Change 0 −2π (x1−x2)
λ

0 ∆Φ

⇒ ∆Φ = −2π(x1 − x2)/λ
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Example #2:
A speaker in the distance is playing a single note. The peaks of the waves
hit the wall together, and pass through the two holes separated by 1 m. At
different locations behind the wall it is either quiet or soft. What can we tell
about the frequency of the note being played if we know that the location
of the hollow circle is quiet?

1 m

8 m

Peaks of the incoming wave

Hint: you will need to know that the speed of sound is roughly 340 m/s, and
that the range of human hearing is 20 – 20,000 Hz.

Solution:
We know that the two waves will have the same frequency, and as the
peaks are arriving together they must also have the same constant phase φ.
Plugging this into the phase chart like before we find

∆Φ = −2π
∆x

λ
.

Because we know this is a quiet location we know that

∆Φ = −(odd)π.

From the geometry of the problem we can calculate ∆x. The distance from
the slit on the left to the hollow circle is 8 m. The distance to the right slit
can be found by using Pythagoras’s theorem:

xright =
√

(8 m)2 + (1 m)2 =
√

65 m ≈ 8.062 m.

Therefore ∆x is given by

∆x = (8.062− 8) m = 0.062 m
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Putting the fact that ∆Φ = −(odd)π and ∆x = 0.062 m we have

(odd)π = 2π
0.062 m

λ
⇒ λ =

2∆x

odd
=

0.124 m

odd
.

This gives us information on the wavelength, to get to the frequency we use
the fact that the speed of sound is vsound = 340 m/s = fλ. The frequencies
the speaker could be playing are

f =
vsound

λ
= 2740× (odd) Hz

We cannot pick a unique answer, only find possible answers. We can list all
the possible answers if we know that humans cannot hear beyond 20,000 Hz
(and thus the speaker would not be loud); otherwise an acceptable solution
would be to stop here. Plugging in values we have (to three sig. fig.)

Odd number Frequency
1 2740 Hz
3 8230 Hz
5 13700 Hz

Odd number Frequency
7 19200 Hz
9 24700 Hz

i.e. only possibilities that people can hear are 2740 Hz, 8230 Hz, 13700 Hz
and 19200 Hz.

8-2-6-1 Approximating the path length difference ∆x

As the last example showed finding the path length difference exactly can
be quite lengthy. Fortunately if we are interested in the type of interference
a long way from the slits we can use an approximation that is considerably
easier. We picture the setup shown in figure 8-2.4. Here we are interested
at the type of interference we get at the location of the white circle located
a distance y from the center on a screen a distance L from the slits. The
approximation that we are going to use will involve the angle θ the angle
between the dotted lines. If we wish to relate this back to y and L we may
use trig: tan θ = y/L.

We start by drawing part of a circle with its origin on the hollow dot and
that goes through the closest slit as shown below on the left.
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L

θ
d

x1

x2
y

Figure 8-2.4: Defining the variables for a common two-slit interference prob-
lem.

d

x2

x2

∆x

d

∆x

θ

Because this is a circle we know that all points on the circle are an equal
distance (namely x2) from the hollow point. The path length difference ∆x
is precisely that small distance that lies between the edge of the dotted arc
and the furthest slit. Here comes the approximation: if the circle was instead
a straight line, the shaded region would be a right-angled triangle. Because
we are dealing with an arc of a circle it is slightly curved this is not exact.
As long as the hollow circle is a long way away ignoring the curvature of the
circle is not a bad approximation. Once we make that approximation we are
lead to the simpler picture above on the right. Looking at this right-angled
triangle we have

sin θ =
opposite

hypotenuse
=

∆x

d
.
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Rearranging we find that ∆x = d sin θ. We must remember this relationship
is only approximate as the triangle is not precisely a right-angled triangle.

Test yourself:

Prove that the angle θ shown in the previous diagram on the right is the
same angle θ in figure 8-2.4.

8-2-7 Summary

This section did not involve much in the way of new material; most of it was
exploring the implications of the idea of superposition:

• Superposition is the way of combining the effects of two (or more)
waves.

• To superpose two (or more) small waves, we add together the effects of
the wave on a particular point at a particular time.

For mechanical waves “effects” means the displacement of the medium ∆y.
For sound waves “effects” can refer to either the change in pressure ∆P or
the displacement of the atoms in the medium ∆y. For light waves “effects”
refers to the magnitude of the electric or magnetic field. Writing the second
bullet point for two sources mathematically

∆ytot(at location x, time t) = ∆y1(at same location x, same time t)

+ ∆y2(at same location x, same time t).

Interference is a “taxonomy of types of superposition”. Specifically we
introduced

• Constructive interference: where the two waves added together maxi-
mally. For harmonic waves this implies that they are in phase, or out
of phase by ±2π, ±4π, ±6π, . . .

• Destructive interference: where the waves cancelled each other maxi-
mally. For harmonic waves this implies that they are in phase, or out
of phase by ±π, ±3π, ±7π, . . .

• Partial interference: anything that is not constructive or destructive
interference.
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• Three terms contribute to the interference condition. We need to con-
sider the combined effect of a possible path length difference (∆x), the
effect of the sources being in phase or not (∆φ) or that the frequencies
are different. The actual type of interference only depends on ∆Φ.

• The phase chart, which is a way of organising the three terms mentioned
above.

8-2-8 Exercises

Spot the error

Each of these numbered explanations contains at least one imprecise or in-
correct statement. Can you find the error and help the misguided student?

1. “When two waves interfere, the wave only has zero displacement from
equilibrium at a location of destructive interference. At a location of
constructive interference, the displacement from equilibrium is always
maximum.”

2. “Constructive interference occurs whenever two sources of the same
frequency are separated by an integral number of wavelengths”

3. “Constructive interference occurs whenever the path length difference
is an integral number of wavelengths for waves of the same frequency.”

4. “If ∆Φ = 0 we have neither constructive nor destructive interference
because 0 is neither even or odd.” (You should try to correct both the
mathematical statement and be able to tell on common sense argu-
ments whether the interference is constructive, destructive or partial.)
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Unit 8:

8-3: Geometric optics
In Physics 7C so far we have dealt with the introducing waves and their
interactions. Our model of waves has been so useful because we have been
able to use the same basic ideas to a wide variety of phenomena; namely waves
on ropes, sound waves, light waves and other types of waves. In this chapter
we will be dealing with waves that travel from one medium to another. In
such a case two things can happen: part of the wave can bounce back into the
original medium which we refer to as reflection, and part of the wave can get
into the next medium (transmission). When a 2-D or 3-D wave travels into a
new medium the wave is typically “bent”, a phenomenon we call refraction.
We can combine these effects of reflecting and bending waves to make the
waves appear as if they are being created at different locations than they
actually are. If the waves in question are light waves then this means that
we see “images” at places distinct from where the objects themselves are.
While most of our examples will involve light it is important to realise that
all types of waves will reflect and refract as they pass from one medium to
another. (For completeness we mention that there are two other methods by
which the path of light can be altered: absorption and scattering. We will
not develop these further.)

So far when picturing waves we have thought of the oscillating sine func-
tion. For 1-D waves this was an adequate way of picturing the wave. For
higher dimensional waves this representation becomes difficult, and so we
introduce the idea of wavefronts and rays.

8-3-1 Rays and wavefronts

Let us start by thinking of dropping a stone in water and letting the rip-
ples propagate outward. Some time later we may photograph the wave we
have created as shown on the left of the figure 8-3.1. In this figure, parts
of the wave are obscured and it is generally difficult to draw and visualise

55
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A two-dimensional ripple
 expanding outward

The wavefronts of the wave 
(top view)

The same wavefront in 
both representations

Figure 8-3.1: An illustration of the surface of water it has been disturbed
by dropping a stone on the left. The picture on the right is a top down
view showing the wavefronts leaving. Here we have chosen the wavefronts
to be the peaks of the wave. The red circle indicates the same peak in both
pictures.

.

interactions between waves. These limitations make it a difficult to use rep-
resentation, so we adopt a more useful representation that takes some of
the details out. One such representation is the wavefront representation in
which we choose to only draw one part of the waves. Because we know the
wave is oscillating up and down, by looking at the picture of the wavefronts
you should have a reasonable idea of what the wave is doing. Occasionally
we shall draw wavefronts for the peaks and troughs in different colours so
that we can superpose them, recalling that peak + peak or trough + trough
will give constructive interference while peak + trough will give destructive
interference.

If the medium that the wave is propagating through is isotropic (i.e. the
same in all directions) the wave will spread out at the same speed in all
directions and the wavefronts will be concentric circles (for 2D waves) or
concentric spheres (for 3D waves). As we get a long distance from the source,
we only see a small portion of the wavefront (shown in bold in figure 8-
3.2) and this part of the wavefront looks almost flat1 When the waves are
(approximately) flat we call them plane waves, because the wavefront then

1This is for the same reason the Earth appears flat. Even though we know the Earth
is spherical we only see a little part of it. A little part of a circle looks almost flat.
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to wavefronts

flat wavefronts

Almost

Rays perpendicular

Figure 8-3.2: A picture showing how the wavefronts look like flat planes at a
large distance from the source. Notice that the rays from the bolded region
are also approximately parallel.

resembles a plane (at least if the wave is three-dimensional).

In addition to thinking about the wave, we can think about the direction
that a particular piece of the wave is travelling. We can join these directions
and they trace out a path of a particular piece of a wave. These paths are
called rays, and are always perpendicular to the wavefronts. Examples of
rays are shown in the figure as arrows. Notice that we can draw whichever
rays are convenient to use. In the pond example we drew many rays going in
all directions, but concentrated the rays in the part where we discussed the
wavefronts looking flat. This is because we would also like to demonstrate
that the rays are close to parallel a long way from the ripple. We are not say-
ing that there is more energy in that part of the wave than any other, we are
simply drawing those rays because they bring attention to the phenomenon
we wish to discuss. Throughout this section on optics we will select our rays
to illustrate the points we wish to make.

Example #1:
Two (plane) waves with the same wavelength are coming in from far away.
One is travelling right and the other is travelling from the bottom of the
page to the top, as shown in the picture below. Find the interference pattern
created by the two waves when they cross.
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One wave
goes right

One wave
goes up

Solution:
The picture above only showed the wavefronts for the peaks. We are going
to introduce the wavefronts for both the peaks (in red) and the troughs (in
blue). We know if two of the same colour cross (i.e. peak + peak, or trough
+ trough) we get constructive interference, while if a red and blue cross we
get destructive interference. Drawing the picture we have

Wave #1

Wave #2

Interference
region

CC C

C

C

C

C

C C C

00

0 0

0

0

0 0

0

0

C: Constructive interference
0: Destructive interference

On the left we have drawn the individual wavefronts crossing, and on the right
we have put C for constructive interference and 0 for destructive interference.
Both of these are easier to visualise than the picture of the wave keeping all
the information shown below:
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8-3-2 Optics and images

Now that we have the concepts of rays and wavefronts we move on to the sub-
ject of (geometric) optics. The approximation that geometric optics makes
is that the rays travel in straight lines until they hit a surface. When the ray
encounters a surface it can either bounce back (reflect) or bend (refract) but
then travels on in a straight line.

When is geometric optics applicable? If light started heading toward a
two-slit experiment we have learned in the previous section that the light
would diffract i.e. we would get bright and dark fringes. But this idea that
light travels in straight lines would tell us we would just get two bright bands!
It is important to realise that the idea of the rays travelling in straight lines
is only valid if the wavelength of the light is much smaller than any of the
objects or slits the light will encounter. In terms of the diffraction problem,
we are saying if the slit is much greater than the wavelength of light then we
can ignore diffraction. Mathematically the approximation we are making is

λ� d, (geometric optics approximation)

where d is the size of any slit or object the light encounters, and λ is the
wavelength of the light.

Before going too much further it is worth considering how we see things.
We are not going to deal with the eye directly yet, as the eye is a complicated
system. We will deal with some aspects of how corrective lenses work a little
later in section §8-3-3-4 but for now all we need to know about the eye is
that it can only see the light rays which reach it. Let us think for a moment
about how we actually see an object such as a tree. The tree does not give
off visible light – we can tell this by the fact that on a dark night we cannot
see a tree. On a bright day we see the tree because the sun gives off light,
which hits the tree and reflects in a lot of different directions. The light that
is reflected is not the same as the light that comes in – otherwise everything
outside would be the colour of the sun! Instead objects reflect certain colours
preferentially, and absorb others. The tree leaves, for example, reflect green
strongly but absorb most of the other colours. When we shine sunlight (which
is a combination of all the colours) the green is strongly reflected which makes
the leaves appear green to us2. We can “see” a particular point on the tree

2The green leaves also absorb almost all red light. If you were to go into a photogra-
pher’s room with only red bulbs with a green leaf it would look black, as there is no green
light in the room to reflect back at you!
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if some of the rays that reflected from that point enter our eyes. The act of
seeing only the top point of the tree is summarised in the picture below:

Sun
white light from sun

These rays tells us you
can see the top of the tree

reflected rays

Here multiple rays have been drawn that enter the eye. Our diagram is not
meant to suggest that a disproportionate amount of light enters the eye;
we draw a higher density of light rays in this region because we are more
interested in light that reaches the eyes than what happens to light going in
other directions. Because multiple rays enter our eyes at slightly different
angles our brain can judge how far away the top of the tree is from us. In
doing this, our brain assumes that the light rays travelled to us in a straight
line. This is not only being done for the top of the tree, but for every point
on the tree!

reflected rays

The phenomenon of light scattering in all directions when it hits an object
is called diffuse reflection. We will come back to how this comes about when
we discuss reflection in §8-3-2-1.

The story for a luminous object (i.e. one that emits light rather than
reflects it) is not that different. Consider a lightbulb. It has rays going off
in all different directions, and we can see the lightbulb if some of those rays
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enter our eyes. Our brain tells us where the lightbulb is by assuming that
the light rays travel in straight lines.

Light rays from a luminous point on the lightbulb (solid)
Light rays from a non-luminous point on the lightbulb (dashed)

For the purposes of figuring out where something is or how the light rays
travel, it is not important whether the object creates its own light, or if the
light is merely reflected; in both cases the object has light bouncing off it at
all angles.

These considerations about how we see things raise an interesting possibil-
ity. The only information we have access to for sight is the light that reaches
our eyes. If we can bend or twist the path light takes, then we will judge ob-
jects to be at different places. This is exactly what happens when we look in
a mirror and see an image of ourselves! Our study of optics is essentially the
study of how light given off by objects (whether this light is created by the
object or simply reflected) can be manipulated into appearing like it comes
from somewhere else. We call this somewhere else an image.

Outgoing lightrays

Optical system

?

Light looks like it is 
coming from here (image)

Incoming lightrays
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The dotted rays are the ones our brain traces back, while the solid rays are
the actual light rays. We see that to locate where the image of a point is we
must look at multiple rays from the same point on the object, and see where
those rays appear to come from. To figure out the entire image of an object
then we must find the image of each point on the object individually. Before
constructing the idea of images too much further, we shall consider the two
simplest ways in which we can change the path of a light ray: reflection and
refraction.

8-3-2-1 Reflection

When a wave reaches the interface between two different media, typically
some of the wave will bounce back. This process is known as reflection.
The example that most people think of when hearing about reflections are
optical reflections in mirrors. Another familiar example of reflection comes
from water waves. As the water waves travel they will reflect off objects
that are floating on the water, and also reflect off the walls of the container
holding the water. Most of us are familiar with the concept of echoes, which
are the reflections of sound waves. In fact, any kind of wave can undergo
reflection!

Let us start by describing how light bounces off a mirror. If you have ever
shone a torch or laser pointer at a mirror in a dark room, you may have
noticed that the light reflects in a particular direction instead of scattering
everywhere. If not, you will get some experience with this in one of your
physics labs. One of the questions we would like to answer is “which direction
does the light bounce off the mirror?” The answer to this question depends
on the angle the light hit the mirror, and in order at answer it precisely we
need to introduce the concept of a normal . For a flat mirror, the normal
to the mirror is just the line that pokes “directly out of the plane of the
mirror”. This means that the normal will always be at 90◦ to the mirror.
If we shine a ray of light onto a mirror, the angle between the ray and the
normal is denoted θinc, where “inc” is short for incident ray. The ray of light
that bounces off the mirror is on the other side of the normal, but at the
same angle! The picture below may make this more clear:
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θinc θref

Normal
Incident ray Reflected ray

Mirror

The angle that the light comes off at is sometimes called θref where “ref”
stands for reflected ray. The law of reflection tells us that3

θinc = θref

To deal with bent mirrors, such as fun-house mirrors, we apply almost
exactly the same principle. The only difference is we look at where the light
hits the mirror, and at least in a small region that part of the mirror is almost
flat. We can then find the normal and use the law of reflection to find where
the light ray goes. By repeating this for many light rays we can find out
anything we want to know about a curved mirror. A quick sketch of how to
do this is presented below.

1. Zoom in so mirror
is roughly flat

2. Construct normal 4. Place reflected ray on diagram3. Use law of reflection

θinc

θref

θinc = θref

Instead of drawing the magnified image, we can also consider drawing a
tangent to the surface at a particular point. As you should know from your
mathematics class, the normal is perpendicular to the tangent line. You
should spend some time considering the definition of a tangent line to figure
out why this “magnification procedure” and “tangent procedure” are both
valid ways of locating the normal.

3You may think that it should be θinc = −θref, as the rays are on opposite sides of the
normal. This would make perfect sense, but because the directions are usually intuitive
the convention in optics is to treat all the angles as positive.
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Example #2:
We have a light ray that hits a mirror as shown. The mirror is slightly
tilted. Where does the reflected ray go?

30◦

Solution:
In this problem we have not been directly given the angle of incidence
directly, rather we will need to do some geometry to figure out what θinc is.
One way of doing this is to construct a right-angled triangle using a vertical
line as shown:

30◦

30◦ 60◦

Because we know the sum of all the interior angles in a triangle sum to 180◦

we know that the angle in the upper right hand corner of the triangle must be
60◦. Because the original light ray is coming in horizontally and the dotted
line is vertical, we can deduce that the angle between the mirror and the
light ray is 30◦.

Now we introduce the normal as a dotted line. Because the angle between
the mirror and the normal must be 90◦ we can deduce that θinc = 60◦. By the
law of reflection we must also have θref = 60◦. The final part of the solution
is sketched below.

30◦
30◦

θinc = 60◦

θref = 60◦

The difficult part of this problem is not the law of reflection itself, but rather
the geometry of finding the incident ray. You may notice that we could have
equally well used the fact that the angles between the mirror and the ray
are the same for the incident and reflected ray, saving us some geometry
steps. We choose not to emphasise this because when we introduce the more
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quantitatively complicated refraction, it is important to make sure you are
using the angle between the normal and the incident (or reflected) ray.

Diffuse reflection

When we discussed forming images, we made a point of stating that light
typically reflects in all directions, and labelled this phenomenon diffuse re-
flection. This behaviour seems very different from the idea of a light ray
coming in and bouncing off in a specific direction as described by the law of
reflection. The difference is that most materials are rough, and so different
places have different normals. A beam of light is really a collection of many
different rays, and even though the incoming rays are parallel they hit dif-
ferent places, and are hence at different angles of incidence from the normal.
As a consequence, the outgoing reflected rays are not parallel.

Incoming light

diffuse reflection
off a rough surface Zoom in

Specular reflection!

8-3-2-2 Refraction

We have already discussed that the speed of a wave depends on its medium,
and this is true for light as well. Because the frequency of the light cannot
change (recall that the frequency of a wave is set by the source) the period
between peaks must stay the same. Because we know vwave = fλ we see that
if vwave changes λ must also change. One easy way of understanding this is
if vwave is small, then the wave cannot travel very far in one period so λ is
small, and if vwave is large then one peak can travel further in a period so λ
is large.

Let us consider the concrete case of light travelling from air into water, and
inform you that light travels faster in air than it does in water. Consider the
case of a plane wavefronts travelling from air into water, and the wavefronts
are parallel to the water surface. This is called normal incidence, as the light
rays are travelling along the normal of the air-water boundary. We note that
light travels faster in air than it does in water, and this makes the wavelength
of light in water shorter. Even so the path that the light takes is unaffected
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Normal to surface

Ray

Wavefronts

λair

λwater

The situation becomes much more interesting if the wavefronts of the
light rays are not lined up exactly with the air-water boundary as shown
below.

In this case part of a wavefront enters the water and slows down, while the
rest of the wavefront stays in the air at its faster speed. The wavefront in
the air “overtakes” the wavefront in the water, but they still have to join
smoothly at the boundary. This causes the whole wavefront to bend. A
useful analogy is the idea of your car getting stuck in mud: if one tire goes
forward faster than the other, this causes your entire car to turn. Note that
this idea works for both the cases where the car goes from a fast medium
(e.g. the road) to a slow one (e.g. the mud) or travels from the slow medium
to the fast one.

Mud
(Car goes slowly)

Road
(Car goes quickly)

Road
(Car goes quickly)

Mud
(Car goes slowly)

This time the rays have been indicated on the wavefront picture in black,
and we can see the ray noticeably bends as we go from air to water. There is
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nothing particularly special about air or water; this bending occurs for any
two different media where the waves have different speeds. This bending of
light as it goes from one medium into another is called refraction. Notice
that within each medium the light rays travel in straight lines.

You may wonder when a light ray hits a surface, how can we tell if it is
going to be reflected or refracted? The answer is that a light ray is typically
both reflected and refracted. We already have some familiarity with this
from our experience with swimming pools. It is possible to see the sun from
inside a swimming pool, so we know that light from the sun must be able
to make it into the water. Therefore the sun’s rays are refracting as they
enter the water. Someone standing on the side of the pool can also see the
reflection of the sun on the water’s surface (usually referred to as “glare”),
so the sun’s rays must also be reflecting off the surface of the pool. There
is no contradiction here – when the sun’s rays hit the surface a ray reflects
and another ray refracts. This does not violate the conservation of energy,
as each of the rays will have less energy than the incoming ray. Remember
that the rays do not signify a specific amount of energy. At the moment we
are simply concentrating on the refracted ray and omit the reflected ray from
our discussion, but it is there nevertheless.

In refraction it is common to talk about the “fast” medium (the medium
with the greater wave speed) and the “slow” medium (the medium with the
lesser wave speed). In the case of air going from air to water, the fast medium
is air and the slow medium is water. The examples of refraction showed that
light that goes from a fast medium (e.g. air) to a slow medium (e.g. water)
that the light ray bends toward the normal. As an exercise you should be
able to show that as light travels from a slow medium to a fast medium
the light rays bend away from the normal. The diagram below illustrates
precisely what is meant by bending away or bending toward the normal.

Normal to surface

Direction light would
have gone if medium

did not change

Actual direction

"Bending toward"
 the normal

Air
(Fast medium)

Water
(Slow medium)

Normal to surface
Direction light would
have gone if medium

did not change

Actual direction

"Bending away"
from the normal

Air
(Fast medium)

Water
(Slow medium)
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That is all the qualitative information we need about refraction. We now
turn to the quantitative task of determining precisely which way a refracted
ray travels as it goes from one medium to another. We know that the amount
of bending depends on the speed of the wave in the medium. For convenience
we define the reactive index n for light in a particular medium as

nmedium =
speed of light in vacuum

speed of light in medium
=

c

vwave

The reason for this is that the speed of light in materials is typically 107 –
108 m/s, while the n for most materials is between one than five. The utility
of the refractive index is that the values of n are easier to use that the values
for vmedium. From the definition of the refractive index, we know three things:

1. nmedium ≥ 1, because nothing can travel faster than the speed of light
in a vacuum.

2. A fast medium has a smaller value of n, a slow medium has a larger
value of n.

3. nvacuum = c/c = 1.

The refractive indices for other materials are given in table 8-3.1.

Material n = c/vmedium

Vacuum 1.0 (exact)
Air 1.0003
Water 1.33
Glass (crown) 1.50–1.62
Glass (flint) 1.57 – 1.75
Silicon 3.5
Germanium 4.0
Diamond 2.42
Eye 1.33
Eye lens 1.41

Table 8-3.1: Common refractive indices

With the definition of refractive index we can now give a quantitative
description of refraction. We will call the refractive index in one of the
media n1 and the angle of the light ray in that medium is θ1, and for the
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second medium we will use n2 and θ2. All these quantities are related by
Snell’s law:

n1 sin θ1 = n2 sin θ2

For a specific situation it is probably useful to ignore the labels “1” and “2”
and think instead of the names of the media. This way it is much clearer
which angle is in which medium. An example of this rewriting for the specific
case of air and water is presented below:

Normal to surface

Air
(Fast medium)

Water
(Slow medium)

θair

θwater

nair sin θair = nwater sin θwater

Some examples of using Snell’s law are given below. Typically the hardest
thing about refraction problems is getting the geometry right; this is a good
time to make sure that your trigonometry is under control!

Example #3:
If we placed a point source of light in a calm pool, how would the light bend
coming into the air?

Solution:
We know that rays come off the light source in all different directions.

Here we have chosen to sketch a few of those directions. We know that the
light ray that is at normal incidence (θwater = 0◦) will pass straight through.
We can see this from either Snell’s law, or by realising that the “tyres” of
the car will hit the “road” at the same time, so no bending will occur.

By applying Snell’s law or by thinking about the analogy of the car wheels
stuck in the mud we know that as we move away from normal incidence to
higher angles, the bending becomes more severe. We illustrate this in the
picture below.
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Object

You may wonder if we can ever “run out of room” as we refract – a question
we will address again in §8-3-2-3

Example #4:
A ray of light (in air) comes in horizontally and hits a glass prism. The glass
has a refractive index of 1.5. What angle does the light refract at inside the
glass?

30◦

Solution:
We know from Section 8-3, ex. #2 that the incoming light ray is at an
angle θair = 60◦ from the normal, as the angles of the tilted surfaces are the
same. The refractive index for air is one, so we can use Snell’s law:

nair sin θair = nglass sin θglass

⇒ sin θglass =
nair

nglass

sin θair =
1

1.5
× sin 60◦ = 0.58

We can use our inverse sine button on our calculator to find θglass = 35◦. The
path of the ray looks like:

30◦ 35◦
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8-3-2-3 Total internal reflection

Let us do another example of Snell’s law. We are going to look at light
starting under water (nwater = 1.33) and being directed into the air above
(nair = 1). If we are underwater we may choose θwater to be any angle between
0◦ and 90◦ by pointing our light source in the appropriate direction. Let us
choose θwater = 60◦ as shown in the diagram below:

We now use Snell’s law to determine the angle θair that the outgoing ray will
emerge.

nwater sin θwater = nair sin θair

(1.33) sin 60◦ = (1) sin θair

⇒ sin θair = 1.152

This is obviously a problem, as we know that the sine of any (real) angle is
between 1 and −1! Here Snell’s law does not give us an answer.

To get a slightly more intuitive feeling for the problem, recall that if we
go from a slow medium to a fast medium the light “bends away from the
normal”. As we increase the angle in the slow medium, we eventually “run
out of room” to bend the light in the fast medium. If we shone light from
air to water the refracted ray bends “toward the normal” and we would
never run into this problem. A more direct way of understanding what is
happening is that it takes such a long time for a piece of a wavefront to make
it out of the water (where they travel slowly) into the air that any part of
the wavefront that made it into the air would be forced to leave the water
wavefront behind.

So we can understand why Snell’s law does not work anymore, but if the
light cannot refract what happens to it? The answer is that all the light
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gets reflected instead. This is called total internal reflection, and it occurs
whenever Snell’s law no longer makes sense. Notice that we cannot get total
internal reflection going from a fast medium to a slow one as there is always
room to bend toward the normal. The smallest angle for which total internal
reflection occurs is called the critical angle θc. To find θc we want to know
when the refracted ray has bent as far as it can go – namely θfast = 90◦. For
the case of water-to-air, we can find the critical angle as follows:

nwater sin θc = nair sin 90◦

(1.33) sin θc = 1

⇒ θc = 48.8◦

i.e. for θwater < 48.8◦ some of the light makes it into the air, but for θwater >
48.8◦ all the light is reflected back into the water. A picture from a swimming
pool demonstrating total internal reflection and the critical angle can be
found in figure 8-3.3.

We do not wish to give the impression that this is a sudden change. When
the light rays are perpendicular to a surface almost all the light is transmitted
or “refracted”. As we make the light rays hit at higher angles of incidence
the amount of light refracted decreases, and the amount of light reflected
increases. Once the angle of incidence is greater than or equal to the critical
angle θc none of the light is refracted; instead it is all reflected. A sequence
of images that demonstrates this change graphically, where the thickness of
the line represents its brightness, is shown below:

Normal to surface
Air

(Fast medium)

Water
(Slow medium)

8-3-2-4 Images again

Now that we have discussed two of the ways in which light rays can change
direction, let us ask what the implications are for how we perceive things.
Let us consider an object that is underwater, and ask how someone standing
above would see it. In example Section 8-3, ex. #3 we already drew how the
refracted rays would look. Our brain assumes that these rays are travelling
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Reflection of foot in water 
(Total internal reflection)

Seeing through the water
(No TIR)

Underwater camera's 
critical angle

Reflection of foot in water 
(Total internal reflection)

Actual foot

Same reflection!

Figure 8-3.3: A picture from an underwater camera. This shows the reflection
of the photographer’s leg from total internal reflection, and then a distorted
view of the pool house. The critical angle is the angle at which the pool house
and things outside the pool can no longer be seen and only the reflection of
the leg survives. The foot that is being photographed was stuck out parallel
to the surface of the water so that we could see its reflection in the surface.

in a straight line, so we add dotted lines showing what the brain would
interpret:

Object

Note that these rays are crossing all over the place! The rays don’t come
back to one place, and the more rays we add the more we see that the light
appears to be coming from a whole area under the water. Why when we look
straight down on an object does our brain still see the object (fairly) clearly?

The answer is that our brain can only interpret the light rays that actually
hit our eyes. Placing a pair of eyes on the diagram as well, and concentrating
only on the rays that make it into our eye tells a very different story.
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Object Object

Image

If we look straight down on the object then it appears to be closer than it
really is. You can see this quite dramatically be standing knee-deep in a
swimming pool. All points from your foot to your knee appear closer to the
surface than they really are to someone outside the swimming pool, while the
rest of you appears normal. This leads to you looking very disproportionate!

Mirrors can be used to form images as well. This time we will deal with
an extended object, so we can tell what the mirror does to the object’s
orientation. Consider an arrow being reflected in a flat mirror. We draw
some lightrays from the head of the arrow and use the law of reflection to see
where they go. We do the same for the bottom of the arrow. We notice that
if we trace the reflected rays back, all the lightrays from the top seem to be
coming from the same place behind the mirror (this tracing is shown with a
dotted line in the figure on the left). We have formed an image of the top of
the arrow. We see all the light from the bottom of the arrow seems to come
from a different point.

You should check that the rays shown on the left hand side obey the law of
reflection.
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What does this mean? Just like the case of an object immersed in water,
the light rays that bounce off the mirror are spreading out, but when our
brain traces them back they all seem to be coming from the same place – we
have formed an image! One way of thinking about this is that our brain could
not distinguish between seeing an arrow and its reflection, or there being two
arrows. The light that reaches our eyes would be exactly the same in both
cases4! Compare the outgoing light rays with the mirror and the outgoing
light rays if there was no mirror but simply a second arrow placed where the
image of the arrow is. We see that the light rays are the same. (We should
also be drawing lightrays that will enter our eyes from the arrow on the far
left, but have chosen not to in order to keep the picture less cluttered.)

A complex example: the corner mirror

To emphasise this further, let us consider a slightly trickier example. We will
consider a point object between two mirrors at right angles as shown below.
What would we see?

(Object)

Mirror

Mirror

To simplify this problem, let us consider only the lower mirror first. Doing
the ray tracing we find the location of the image for the lower mirror.

4This is making the assumption that there is nothing else around to see in the mirror.
Unless you have an identical twin, your appearance in the mirror is a give-away that there
are not really two arrows here.
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Now here comes the trick: the light rays that bounce off the mirror look
exactly like they have come from the image. Insofar as the vertical mirror
is concerned the light rays that hit it are exactly the same as if we had two
objects! We are going to pretend that this is really the case – we shall call
our original object #1 and the image in the lower mirror object #2. To stop
the ray diagrams from confusing us, we shall do the ray tracing for object
#1 on the left-hand side, and then do the ray tracing for object #2 on the
right-hand side.

Image from #1

#1

#2

Image from #1

#1

#2 Image from #2

Are we done? We have to consider the possibility that the images on the
right-hand side themselves have images in the lower mirror.5 “Image from
#2” is not a problem – all the reflected rays head away from the location of
the horizontal mirror so it cannot have an extra image. “Image from #1” is
more problematic as one of the rays shown in the left hand figure will hit the
horizontal mirror.

What we should do is imagine that the horizontal mirror is in place, the
vertical mirror is missing and that “Image from #1” is really an object. Note
this is what we would have done anyway if we had started with the vertical
mirror rather than the horizontal one. Doing this we find that the image of
“Image from #1” is in the same place as “Image from #2”, so we don’t get
any new images out.

Now we have convinced ourselves we are done, we can draw the final solu-
tion:

5We certainly know this can happen, as any child that has stood between parallel
mirrors in a bathroom and wondered at the infinite number of images of themselves can
attest!
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(Object)

(Image)

(Image)

(Image)

When we look at this corner mirror we would think we saw four objects –
the original object and the three images. While this example was a little
involved, it was designed to show that insofar as the outgoing light rays
are concerned an image is indistinguishable from having an object at that
location.

In all the examples so far the light rays have appeared to come from the
images, but this has been because our brain assumes that light travels in
straight lines. The actual light rays (the solid lines) do not actually meet at
the location of the image. Only the projection (i.e. assumption that the rays
travel in straight lines) of the light rays, shown in the figure as dashed lines,
actually cross at the location of the image. These sorts of images are known
as virtual images . The other sort of image that can exist are real images ,
where the light rays do actually cross at the location of the image. We will
come across examples of real images when we discuss lenses. (We note that
lenses are not the only examples that can give real images; curved mirrors
are also capable of giving real images.)

Before starting on lenses, let us summarise the ideas of rays and images:

• Each point of an object (luminous or reflecting) can be taken as a source
of diverging rays.

• Light rays within a particular medium travel in straight lines if there
is no scattering. Light rays can bend due to medium changes by either
reflection or refraction. We will neglect scattering in our discussion.

• Light rays do not represent the amount of energy in a wave. We can
choose which light rays to draw, depending on which ones are relevant
for the problem we are dealing with. In the case of lenses and mirrors
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we typically choose to only draw the light rays that hit the lens or
mirror.

• If the rays appear to be coming from a location, the place the rays
track back to is called an image.

• To find the complete image of an object, we choose points on the object
and see if they form an image anywhere. By doing this for enough
points we can reconstruct the image of the entire object.

• Reflection and refraction are laws that apply to all waves, not just
light. Likewise, “images” can be formed for all types of waves as well.

• When dealing with extended objects (like the arrow above) in addition
to asking where the image is, we can ask what size the image is and
whether it is “right-way-up” or “upside-down”. We will illustrate these
concepts with lenses in the next section.

8-3-3 Lenses

We have shown that a mirror can produce images by using nothing more than
the law of reflection. We have also shown how looking directly into a pool
of water also produces an image by using Snell’s laws for those rays which
enter your eyes. Now we are going to introduce lenses, which are specially
shaped materials designed to produce good images by using refraction.

Before getting started, it is worth pointing out something that may seem
obvious: lenses are manufactured. A typical transparent object will not
be the correct shape to produce a good image. For example, consider the
glass blob below. Someone standing to the right would not see the light rays
appearing to come from any particular location – they would not get a (clear)
image of the object on the other side. We have only chosen to draw three
rays here (and show the normal lines used as black dashed lines) but we see
that the lines do not appear to be coming from a single location. We would
not get a clear picture of the original red object by looking through the blob.
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Odd shaped glass
not a lens!

Object

In contrast to our typical blob which refracts light, a lens forms a sharp
image. The typical way that a lens does this is by changing its curvature
(and hence changing its normal) continuously to ensure that the light rays
are actually focused. This may sound contrived, after all how often do we
find that the curvature changes in just the right way to keep the light in
a sharp focus? Well, it is contrived! However lenses are incredibly useful
in correcting eyesight, magnifying objects and seeing distant stars. It is
precisely because these systems are contrived that we must pay so much for
glasses – the lenses must be carefully made!

The lenses we will be discussing are either converging (the left picture of
figure 8-3.4) or diverging (the right picture of figure 8-3.4). The light bends
as it enters the lens (i.e. the light goes from air to the lens material) and as
it exits the lens (the light goes from the lens material to air). We are going
to simplify the treatment of lenses by treating the light as if it bends only
once in the center – a good approximation if the lens is thin. If we knew the
precise shape of the lens, we could figure out the normal at every location
and use Snell’s law ray-by-ray to find how the light exits the lens. Instead we
are going to use the fact that the lenses are specially made and have special
points called focal points to find where light rays go. If you like, it is the job
of the person who makes the lens to ensure that the light behaves the way
that you want!6

Before addressing the most noticeable feature of figure 8-3.4 it is convenient
to make a definition. The optical axis of a lens is the line that goes through
the central part of the lens, and is parallel with the normal at the center of

6However, by knowing that the material that makes up the lens is glass we can tell that
the picture on the left must be a converging lens and the picture on the right must be a
diverging lens if these are lenses at all. The precision required of the lensmaker does not
let us off the hook for having some understanding of why a lens works the way it does.
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(Converging)
Lens

Parallel light rays Focal point

Optical axis

(Diverging)
LensParallel light rays

Focal point

Optical axis

Figure 8-3.4: Showing what happens to parallel light rays as they enter a
converging lens (on the left) or a diverging lens (on the right). This diagram
also serves to define what a focal point is.

the lens. All the rays on the left hand side of the lenses in figure 8-3.4 are
not only parallel to each other, but are also parallel to the optical axis.

By looking at the lenses in figure 8-3.4, we notice that each lens has a
“special point”. For the converging lens the special point is where all the
light rays cross, while for the diverging lens this special point is where the
light rays appear to be diverging from. In both cases the special point is
referred to as the focal point because it is where the rays parallel to the
optical axis are focussed. For a converging lens the light rays actually cross
and in analogy with images we call the focus real. In contrast no light rays
actually cross for the diverging lens. Instead it is our brain’s insistence that
light travels in straight lines that makes it appear to us that there is a point
source behind the diverging lens. In this case the focus is virtual.

Before showing how to use the focal point to locate images, we should
point out one other important fact: in the middle of the lens the left and
right sides of the lens are parallel. Drawing the ray diagram for a ray that
passes from air into a block of glass we see that the ray that exits is parallel
to the ray that entered.

Rays on both sides parallel,
but exiting ray is "shifted" passing through the glass

If the lens is thin, treating the ray as
straight is a good approximation.
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For the thin lenses that we are discussing here, the “shift” of the central ray
is negligible. We shall treat the ray that passes through the center of the lens
as being, to a good approximation, unaffected by the presence of the lens.

8-3-3-1 Ray tracings: using the principal rays

In this section we will learn how we can use the fact that lenses have focal
points to allow us to figure out where the rays go, instead of having to apply
Snell’s law twice for each ray. For each of our lenses there are three rays which
are easy to find using knowledge of just the focal point and the position of
the object – we call these special rays principal rays . We will show how to
find the principal rays for both a converging and diverging lens.

Let us start with some general comments that apply to both converging
and diverging lenses. In a lens problem we start with an object from which
the light comes off. Typically we denote this object as an arrow, so that we
can tell by looking at the final image if the object is inverted by the lens.
We have discussed what the focal point is for a lens; for a symmetric lens
we have two focal points on either side – one where the rays parallel to the
optical axis coming in from the left would be focussed, the other where rays
parallel to the optical axis coming in from the right would be focussed. The
focal length of a lens tells us how far from the lens the focal points are. The
magnitude of the focal length is the distance from the lens to each focal point,
while the sign tells us if the lens is converging or diverging. For a converging
lens we take f > 0, while for a diverging lens we take f < 0. A diagram of
a lens and its characteristics (i.e. focal points and optical axis) are shown
below.

focal length ffocal length f

Converging lens

Optical axis

focal
point

focal
point

Converging lens Diverging lens

Finally, as we can see from the picture above, we don’t draw out the lens.
We are making the approximation that the lens is thin and that refraction
(bending) only occurs once at the center of the lens. To make this approxi-
mation clear, we replace the lens with a vertical line and the “caps” tell us
if the lens is converging or diverging.
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Converging lenses

Let us start by discussing how we would find the image from the object shown
below. For the moment let us just ask about the tip of the arrow. We know
that to find the image of a point we must look at multiple rays from that
point and see where they go. We start by drawing many different rays that
come off the object

Converging lens

1

2

3

Each of these rays end up being refracted. For those special rays labelled 1,
2 and 3 we can write down where they go straight away.

From our earlier picture, we know that rays that enter the lens parallel
to the optical axis (such as ray 1) end up going through the focal point on
the other side of the lens. We have also discussed how the light that passes
through the center does not deviate significantly. For the rays labelled 1 and
2 we can write down what happens to them immediately:

Converging lens

1

2

3

The ray labelled 3 takes a little more thought. We mentioned that re-
fraction was reversible because Snell’s law did not care which medium was
labelled “1” and which was labelled “2”. As a consequence by looking at our
converging lens in figure 8-3.4, we see that light that comes from the focal
point will get bent back parallel. The diagram below shows in detail what
happens to ray 3:
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Converging lens

1

2

3

Notice that all these rays cross at a particular location. That is where the
arrow tip will appear to be for someone who is standing on the far right of
the lens. The light rays look like they are leaving this point, just as if the
real arrow tip had been placed here. Because the lens designer (we presume)
made the lens precisely, all the other light rays should be focussed here as
well. Drawing in all the light rays the picture we get is

Converging lens

1

2

3

???

Notice that we only know where the image of the tip of the arrow is going
to be from this analysis. Because we don’t know when to stop drawing we
have simply drawn question marks at the bottom of the arrow. Points on
the optical axis are slightly tricky because all three of the principal rays
presented here pass through the center of the lens. We will come back to the
issue of the optical axis after discussing diverging lenses. Because the light
rays actually cross in this example we would call this a real image.

If we are only interested in locating the image, then we only need to find
out where the three principal rays intersect.7 The three principal rays are:

1. The ray that is going into the lens parallel to the optical axis; this ray
gets bent to go through the focal point (see figure 8-3.4.)

2. The ray that passes through the center; this does not bend.

7Technically, we only need to find out where two of the principal rays intersect. We
use three because we can, and it provides a check that we did our other rays correctly.
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3. The ray that comes from (or appears to be coming from) the focal point
to the lens; this ray gets bent back so it is parallel to the optical axis.

In typical optics problems we will only draw the principal rays, although it
is important to realise that all the light rays that pass through the lens and
are not obstructed make the final image.

Diverging lenses

Our procedure for diverging lenses is similar to the one presented for con-
verging lenses. We start by referring to how we have defined the focal point
in figure 8-3.4 to give us information on how the light should behave. The
light which comes off the object parallel to the optical axis gets bent so that
the ray appears to be coming from the focal point. We label the light ray as
ray 1 in the picture below, and draw a dotted line to show where the light
ray appears to have come from. We also include ray 2, which passes through
the center undeflected.

Diverging lens

1

2

The third principal ray is obtained by considering the reversibility of re-
fraction, just as we did for the converging lens. We know that any light that
travels parallel to the optical axis gets bent so that it appears to come from
the focal point. Thinking about the light travelling the other way, we have
that the light that would hit the focal point on the other side of the lens
would get bent back parallel to the optical axis. We show this below, where
we note that the dotted line indicates where the light ray would have gone
had the lens not been there.
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Diverging lens

3

Ray coming in

Ray going out

Where the ray would
have gone 

Where the ray appears to
have come from

Normally we do not draw where the light ray would have gone, as is only
useful for showing you where to draw the line. The dotted line that shows
where the light appears to have come from is incredibly important however,
as a person viewing the light from the lens would think that this ray would
have travelled horizontally.

So let us put all three principal rays together:

Diverging lens

We note that unlike our previous example, the light rays (solid lines) do not
actually cross anywhere. However, someone on the right of our lens looking
into would think that the light is coming from a smaller arrow located at the
point where all the light rays seem to be coming from (dashed lines). The
dashed lines cross, and our brain interprets this as a small arrow located at
the point where all the dashed lines cross even though no actual light rays
(solid lines) cross there. We call this a virtual image.

To make it slightly clearer why the image seen by a person on the right
is the same as a small arrow where the dotted lines cross, it is useful to
remember what an image is. We could ask “if we had no lens available, what
size object would we need, and where would we need to place it so that the
light that reaches us is exactly the same?” The answers to these questions
determine the size and location of the image. For example, if we replace the
original arrow and lens with the small arrow located at the point where the
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Diverging lens

Figure 8-3.5: To the right of the position of the lens in the top diagram, there
is difference between the light rays coming off the object and going through
the lens or the light rays coming directly from the image. Hence our brain
cannot distinguish the two scenarios.

dotted lines intersect, we see on the right that there is no difference in the
light rays on the far right of figure 8-3.5. If you are standing to the far right
the only information your eyes have is the light rays that enter them, and
you have no way of distinguishing these two situations. Of course we can
see that before the location of the lens the light rays are vastly different, but
that does not affect an observer to the right of the lens.

We finish this section by summarising how to find the three principal rays
for a diverging lens:

1. The ray that travels parallel to the optical axis gets bent so that it
appears to be coming from the focal point on the object’s side of the
lens.

2. The ray that travels through the center is not deflected.

3. The ray that would hit the focal point on the far side of the lens is bent
to become parallel to the optical axis.
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The optical axis

So far we have found the image location for the tip of the arrows presented.
Strictly speaking we should see where the image of the base of the arrow is.
This leads to a problem for the examples considered so far because the base
of the arrow has been on the optical axis. For both converging and diverging
lenses the optical axis is a little tricky. The reason is that the ray that goes
through the center of the lens also goes through both the focal points. Our
normal construction of the three principal rays fails for any point on the
optical axis as all three principal rays are the same.

What we do know, however, is that points on the optical axis have images
on the optical axis. We know this because the one principal ray we do have
is always on the principal axis and we know the image is where all the rays
that pass through the axis meet up (or appear to come from). Since we have
one ray that is always on the optical axis the image must also be on the
optical axis.

So how do we locate where along the optical axis the image forms? One
way of finding it is to draw a point that is very close to the optical axis but not
quite on it, and perform the ray tracing for that point instead. Another way
uses information we will introduce later, the thin lens equation. Whichever
way you choose to do it, the result is that the image distance for the base of
the arrow is the same as the image distance for the tip of the arrow, provided
the tip is directly above or directly below the base. Thus we shall draw our
images of arrows down (or up) to the optical axis. If the base of your object is
not on the optical axis you would be well served to do a separate ray tracing
for the base to find where its image is located.

8-3-3-2 The thin lens equation

The problems that we are doing involving lenses have been finding images
for a given object and lens combination. We can think of other questions
that will be of interest to us later, such as “where would we have to place
an object so that the image ends up in a particular location?” or “given this
object, and if I want the image to be at a certain location, what is the focal
length of the lens I should use?”. All of our lens problems, no matter how
phrased, come down to relating the object, image and focal length of the lens
to one another.
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We have already learned how to do ray tracings. Although we have pre-
sented ray tracings as a way of going from an object to an image, with some
care you can answer any of the questions posed above. The drawback of
using a ray tracing is that if we want an accurate answer we must make sure
that all our lines are carefully measured and that we setup the problem to
scale. While a rough ray-tracing is often useful for figuring out what sort
of answers we should expect, there is an easier way of getting the precise
location of an image: using the thin lens equation.

The location of the image along the optical axis depends only on how far
away the object is away from the lens, and the focal length of the lens itself.
It does not, for example, depend on the height of the image. We introduce o
as the distance between the object and the lens, and i as the image distance.
The magnitude of i is the distance between the lens and the image, but i can
be either positive or negative. We choose a convention where i > 0 for a real
image, and i < 0 is for a virtual image. Note that these are definitions for
the sign of i, not the definition of if an object is real or virtual. We remind
the reader that we have introduced the concept of a focal length which is
positive for converging lenses and negative for diverging lenses. The object
distance o is always positive.8

Converging lens

Object distance o Image distance i

Focal length f

i < 0 Image is virtual
i > 0 Image is real
f > 0 Converging lens
f < 0 Diverging lens
o > 0 (Almost) always

These three quantities o, i and f are related by the thin lens equation

1

o
+

1

i
=

1

f

Looking at our previous ray tracings it is apparent that the image and
the object do not have to be the same size. This leads us to define the
magnification m. We define m as the ratio of the height of the image to the
height of the object. Thus, if the magnification is 2 it means that the image
is twice as high as the object. We can relate the magnification m to the

8It is always a positive number for an actual object. Complications arise when the
“object” in question is really an image from another lens in which case it is possible to get
a negative object distance. We will neglect this subtlety throughout Physics 7C.
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object and image distances i and o via

m = − i
o
.

Notice that the magnification can be negative. If the image is real (so that
i > 0) then m < 0, meaning that the image would be upside-down. A virtual
image has i < 0 and m is positive, telling us that the image is upright.

The advantage to using these particular conventions (rather than conven-
tions based on which side of the lens that we are discussing) is that we can
use the exact same conventions when discussing curved mirrors with focal
points.

Test yourself:

If an image is bigger in size than the original object, what does this tell us
about the magnification? Does it matter if the image is upright or inverted?

8-3-3-3 Multiple lenses

Once we have single lenses under control, dealing with systems with more
than one lens is not much more difficult. We start by looking at only the
first lens. The first lens creates an image from the object, and we can find
this image location using the techniques we have already discussed. But the
whole point of an image is that the light appears to be coming from the
image (regardless of the image type). Thus we can replace the object and
the first lens by pretending that the first image is itself an object with light
coming off it. We then ask what the next lens in our system does to this
“new object”.

We illustrate this process by way of example. Let us look at a two lens
system, and indicate the position of the focal points from the first lens with
filled circles, and for contrast indicate the position of the focal points for the
second lens with hollow circles. We find the image from the first lens by
doing a ray tracing
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Converging lens

The combined effect of the object and the first lens is to make it look like the
light rays are emanating from the image shown as a dashed line. To finish
the problem we treat the image as an object in its own right:

8-3-3-4 Applications

Cameras

Here we’ll model a camera as a box with film on the back wall, which acts
as our screen, where our (real) image should ideally be located at. The lens
has a fixed focal length f , and is able to slide in and out of a tube in front of
our box. While this is a rather simple model, it is sufficient to explain how
most cameras (both film and video) work.

Note that since the camera lens produces a real image, it will appear
upside-down on the film negative. This is taken into account in the film
developing and printing process, as this negative is used to project yet an-
other real image onto the photograph print. This print is then right-side-up,
unless your film developing service loads the negative into their processor
incorrectly. If you have a Polaroid camera, which makes a direct print from
exposure, the light from the lens must be flipped off of an internal mirror
before exposing the Polaroid picture.

Since our simple camera has a lens of a fixed (positive) focal length f , then
the lens to image distance i must vary for different object distances o. In
fact, if you inspect the thin lens equation, as the object distance o decreases
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Film

Object distance Image distance

Figure 8-3.6: Cameras change i in order to compensate for varying o

(since f is fixed), then the image distance i must increase. You may have
seen this for yourselves, as the lens barrel on your camera must be moved
outwards to focus on close-up objects.

Note that “focus-free” cameras are just that – the lens-to-film distance
is permanently fixed, such that the images from a select range of object
distances will all be at least tolerably focused on the film. Needless to say,
photographs from such cameras are not of the highest quality, but these
cameras are plentiful because they are cheap and less prone to mechanical
failure than are manual focusing and auto-focusing cameras. “Disposable”
(though the lenses are recycled) cameras have fixed lens-to-film distances.

Test yourself:

Why can’t you make a camera that focuses light onto a film with a diverging
lens?

The eye

In contrast to a camera we cannot change the image distance significantly
for our eye. That is because the lenses are at the front of the eye (we have
both a crystalline lens and the cornea contribute to the bending of rays) and
the receptors are on the retina, located at the back of the eye. To get a clear
image the image distance i must be the same as the diameter of our eyeball.
For most people this distance is roughly 1.71 cm. Because both the eye and
a camera require focussing light onto a screen, they both require converging
lenses.

So if we cannot change i why can we see things at a variety of distances?
Unlike a camera, the focal length of our lens can change. We recall that a
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lens works by refraction, and while we cannot change the refractive index of
our eye the muscles around the eye, referred to as the ciliary muscles , can
distort the eye’s shape.9 When the ciliary muscles are relaxed the eyeball is
(relatively) flat, and the light rays are not bent much as they pass through
the lens. This corresponds to having a large focal distance, because it would
take a long distance for light rays parallel to the optical axis to converge to a
point. When these muscles squash the eye the lens becomes more round, and
the normals change more. This change in normal along the lens corresponds
to more bending of the light as it passes through the lens. This “squashed
eye” has a smaller focal length. Our ability to change the focal length of our
eyes is referred to as accommodation.

Let us look at the thin lens equation (and remember that we are holding
i > 0 to be constant):

1

f
=

1

o
+

1

i

For objects a long distance away the 1/o term becomes very small, and the
focal length of the eye becomes roughly the same as i, the diameter of the
eyeball. As we try and focus on objects that are close the 1/o term becomes
large. This requires that 1/f is also large, or that f is small. That is, our
ciliary muscles must squash our eyes a lot in order for us to focus on very
close objects. These are the muscles that we feel “strain” when we try and
focus on close objects.

There is a limit to how much squashing your eyeball can withstand, or
that the ciliary muscles can provide. Consequently there is a shortest focal
length fmin that your eyes can have, and a closest object that you can focus
clearly on. The nearest distance that you can hold an object while still clearly
focussing on it is called your near point dnp

10. It is not the same as fmin,
rather they are related by

1

fmin

=
1

dnp

+
1

i

9You may object that if we are distorting the eye’s shape then presumably the lens-
retina distance would have to change as well. To a good approximation we can ignore this
change, and treat i as constant.

10There is a slight problem here – the near point is not actually a point at all! By the
definition it is either a collection of points or a distance. Unfortunately this terminology
is standard, and here we choose to refer to the near point as the shortest distance that
you can focus on.
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In practice it is much easier to measure dnp than fmin, because to measure
dnp you only need to measure how close you can bring an object to your eye
while still being able to focus on it. The nominal value for a middle-aged
person for the near point is around 25 cm.

Similarly there is a furthest distance you can focus on when you total
relax your eyes. This distance is known as your far point, dfp. For “normal”
eyesight the far point is infinity – there is no furthest distance someone can
focus on. However, if your eyes cannot relax, or your relaxed focal length is
longer than your eyeball’s diameter then you will have a far point as well.
That is, you will not be able to focus on objects beyond dfp.

Let’s now consider three common defects of eyesight. Presbyopia (liter-
ally, “elderly eyes”) is nothing more than the normal loss of accommodation
with advancing age. Children can read books much closer to their face than
adults, because their near points are very short and their eyes are able to
accommodate quite strongly. This ability decreases with age, so near points
for children start to lengthen from as close as 10cm, out to 25cm by middle
age (the nominal value for the near point), to even arm’s length or longer for
older people. Typically, everyone will eventually develop presbyopia. When
a presbyopic person’s near point is farther than o =25cm, glasses or contacts
are prescribed to correct this vision defect.

Farsightedness (or hyperopia) literally means only far-away things can be
seen. This is because the relaxed lens is too flat, or that the distance between
the retina and the lens is too short. A relaxed, unaccommodated farsighted
eye cannot focus on distant objects. However, slight accommodation can
focus distant objects onto the retina, so farsighted people can see distance
objects just fine. As objects get closer, then accommodating more will still
focus images onto the retina. For close-up objects, then the eye must strongly
accommodate to focus images onto the retina. After a certain point, the eye
cannot accommodate any further and near objects remain out of focus.

Typically, children with hyperopic eyes will not have a problem with their
vision, because they can strongly accommodate their eyes so they can see
objects at any distance. However, as they gradually lose that ability as
they grow up, then they will gradually not be able to see close-up objects.
When a hyperopic person’s near point is farther than o = 25cm, then glasses
or contacts are prescribed to correct this vision defect. This is somewhat
similar to presbyopia, but since accommodation is needed to focus on objects
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at all distances in hyperopia, eventually hyperopic people will need glasses
(i.e., bifocals, or even trifocals) in order to see all object distances when
accommodation is lost.

Nearsightedness (or myopia) is literally the ability to only see nearby
things. This is because the relaxed lens is too curved, or that the retina
to lens distance is too long. Since the ciliary muscles can’t “unaccommo-
date” a lens and flatten it out, there is no way that a myopic eye can see
distant objects. As a myopic person’s far point is closer than o = ∞, then
glasses or contacts are prescribed to correct this vision defect. However,
while it is still relaxed, a myopic lens is able to focus on midrange objects.
Accommodation easily allows the lens to focus on nearby objects.

Eye lenses

When considering corrective lenses, we only need to worry about whether or
not a (clear) final image can be made on the back of the retina. The way we
go about this is by recalling that the eye itself is a lens, and does not care if
it is looking at light that comes off an object directly or light that appears
to be coming from the image of some object (as would be the case when we
are wearing protective lenses).

This gives us a strategy for modelling corrective lenses. We need to use a
corrective lens because the object that we wish to focus on is closer than our
near point or further away than our far point. The corrective lens creates an
image of the object, and as we learned in our treatment of multiple lenses
looking at the object through the corrective lenses is indistinguishable from
trying to use our uncorrected eyesight to look at the image of the corrective
lens. Provided the corrective lens places the image between our near point
and our far point we will be able to see the object in question. By giving an
object range that we wish to see (e.g. all objects up to 10 cm from my face)
and knowing the near and far points, we can figure out what the focal length
of the corrective lenses is required.

One word of warning: typically when people quote the “strength” of lenses
the number quoted is not the focal length. Instead it is the number of optical
strength, which has SI units of diopters D

D =

(
1 m

f

)
m−1.
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Note this means that the less lens correction needed (which corresponds to
less bending, and a higher focal length) corresponds to a lower number of
diopters. Also note that depending on whether you need converging (f > 0)
or diverging (f < 0) lenses that the prescription for your lens can be either
a positive or negative number of diopters.

8-3-4 Summary

1. Become familiar with the idea of wavefronts and rays.

2. Geometric optics is the approximation that rays always travel in straight
lines. This approximation is good provided that the wavelength is much
smaller than anything it encounters (i.e. we are neglecting diffraction).
The geometric optics approximation allows us to perform ray-tracings
to locate images.

3. When a wave encounters an interface between two media then part of
the wave can “bounce-back” (reflect) while the rest can be transmitted
into the other media. The transmitted wave bends, a process called
refraction.

4. The law of reflection states that θinc = θref, with both angles measured
from the normal.

5. Rough objects have a rapidly changing normal and as an effect light is
reflected in all directions when it hits the surface. This is called diffuse
reflection.

6. Each non-absorbing material has a refractive index that describes how
quickly the wave travels. The higher the refractive index, the slower
the wave travels in that medium. For light the refractive index in a
medium is defined as nmedium = c/vmedium, where vmedium is the speed
of the wave in the medium and c is the speed of light in vacuum.

7. To find the direction that light bends, we use Snell’s law n1 sin θ1 =
n2 sin θ2. Both θ1 and θ2 are measured from the normal.

8. If Snell’s law cannot be satisfied then none of the wave can be trans-
mitted; instead it is all reflected. This process is called total internal
reflection. Total internal reflection can only occur when the light is
coming from a faster medium and reaches the boundary between me-
dia.
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9. Our eyes can only track back the rays that reach our eyes, and so if rays
appear to be coming from somewhere then our brain thinks there is an
object there. If there is no object there, the object our brain thinks it
sees is called an image.

10. Images come in two types: real and virtual.

• A real image is where the light rays actually come to a point and
then spread out again. This sort of image can be placed on a
screen.

• A virtual image is an image where the light rays do not cross, but
our brain traces back the rays and is tricked into thinking that
they cross.

11. For thin lenses or particular curved mirrors there is a focal length f .
The relationship between the object distance o and image distance i is

1

o
+

1

i
=

1

f
.

If i is positive, this is a real image, whereas if i is negative this is a
virtual image. Lenses work off the principle of refraction; this is not a
special new law of nature.

12. The image of an object is typically a different size. We use the magni-
fication m = −i/o to describe the change in size; m = 2 for example
means the image is twice as big as the original object. If the magnifi-
cation is negative then this means the image is inverted.

8-3-4-1 Derivations*

Three results that we have simply presented have results we could have de-
rived rather than simply stated. We present the derivations here for the in-
terested reader. While not necessary to apply these equations, understanding
these derivations will deepen your understanding.

Snell’s law

Let us draw both the peaks (as wavefronts) and the rays of light together for
light that is travelling from air into water.
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θw

θw

θa

θa

Look at the distance between the wavefronts on the boundary, shown as a
bold line between the two indicated normal (dashed) lines. Let us call this
distance h for hypotenuse, because it is the hypotenuse of both the right
angled triangle in the water and the right angled triangle indicated in the
air. We know that the distance between the wavefronts (which makes up the
opposite side of these triangles) is given by the wavelength in that medium.
Writing this out for the triangle in the water we have

sin θw =
λw

h
⇒ h =

λw

sin θw

.

For the triangle in the air we have a similar relationship:

sin θa =
λa

h
⇒ h =

λa

sin θa

.

Because we know that the hypotenuse is the same in both of these equa-
tions, we are lead to the conclusion that

λw

sin θw

=
λa

sin θa

.

By multiplying this equation by f and recalling that vwave = fλ we have

fλw

sin θw

=
fλa

sin θa
vw

sin θw

=
va

sin θa

Finally we recall that va = c/na (and a similar result for water) we have

c

nw sin θw

=
c

na sin θa

.



98 CHAPTER 8-3. GEOMETRIC OPTICS

This result only holds if

nw sin θw = na sin θa,

which is precisely Snell’s law, is true.

Magnification

Look at the principal ray that goes through the center. Because it is a
straight line, the gradient does not change.

o

i

|hi|

|ho|

We see that the gradient on the left hand side is

gradient =
∆y

∆x
=
−ho

o
.

We can use the information on the right-hand side to calculate the gradient
we get

gradient =
∆y

∆x
=
hi

i
.

Because this ray does not bend, we know these gradients are the same. There-
fore:

−ho

o
=
hi

i

Rearranging this equation we have

m ≡ hi

ho

= − i
o

The thin lens equation

We will prove the thin lens equation for a converging lens that produces a
real image. The other cases can be shown in a similar manner. Unlike the
magnification, we shall pay attention to the ray that goes parallel to the
optical axis, and goes through the focal point.
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o

i

|hi|

|ho|

f

We know that there are two ways of calculating the gradient of the ray
that passes through the focal point. The first manipulates the fact that the
incoming ray has the same height as the object, but drops to the focal length
within a focal distance

gradient =
∆y

∆x
= −ho

f

The second way of calculating the gradient uses the fact that the height of
the ray drops to the location of the image in the distance i. Because hi < 0
we should be slightly careful with the sign of ∆y

∆y = yf − yi = hi − ho ⇒ gradient =
hi − ho

i

We can get rid of hi by using the magnification

hi = mho = − i
o
ho.

Writing out our gradient again we obtain

gradient =
− i

o
ho − ho

i
= −

(
1

o
+

1

i

)
ho.

As a straight line has a constant gradient, the segment we use should not
matter. Therefore these two expressions for the gradient must be equal:

−
(

1

o
+

1

i

)
ho = −ho

f

Cancelling the −ho from both sides leaves the thin lens equation

1

o
+

1

i
=

1

f
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8-3-5 Exercises

1. A ball is sitting 30 cm in front of a plane (i.e. flat) mirror that extends
a long way. Draw a ray-tracing and show the location of the image of
the ball. Is the image real or vritual?

2. Now the ball is sitting 30 cm in front of a finite plane mirror. You are
walking by, 60 cm in front of the mirror (shown as the dotted line).
How far left of the ball can you stand while on the dotted line and still
see the image of the ball? Where is the image located? Is it real or
virtual?

20 cm 40 cm

30 cm

Your path

60 cm

Note: diagram is not to scale.

3. For the same scenario as the previous question, how far to the right of
the ball can you stand while on the dotted line and still see the image
of the ball?

4. On the next two pages are pictures of a lens, and an object indicated
by an arrow. The focal points are shown as the black dots. On the
diagrams complete the ray tracing and ask yourself the following:

• Does an image form?

• Is the image real or virtual?

• Where is the image formed?

• Is the image larger or smaller than the original? Is it inverted by
the lens? Putting both of these together, what is the magnifica-
tion?

5. Now pick some examples from the 10 rays-tracings, and find the images
using the thin lens equation. Is the image where you expect? Is the
sign of i the sign you expect? Treat each little square as a distance of
1 cm, so that the lenses have |f | = 6 cm.
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Unit 9:

9-1: Fields

9-1-1 Overview

Fields are used in almost every part of physics. In physics 7C we will con-
centrate on the gravitational, electric and magnetic fields. We have some
experience dealing with gravity from Physics 7A and 7B, so we will gain our
intuition on fields from concentrating on gravity. We will not be able to do
anything we could not before after discussing the gravitational field, but it
should make discussing less familiar fields easier.

After dealing with gravitational fields we develop electric fields (§9-2) and
magnetic fields§9-3. Here the language of fields is much more useful than
thinking about objects interacting directly with one another. The last section
in this unit (§9-4 shows that electric and magnetic fields are closely related
and can propagate – a phenomenon we commonly refer to as “light”! For this
problem, fields are indispensable: neglecting them would lead to a violation
of both the conservation of energy and conservation of momentum! So when
we are learning how to calculate the same quantity with or without using
fields (as we will do here under the names of direct method and field method)
it is worth keeping in mind that there is a good reason for going through
this!

By the end of this chapter you should have familiarised yourself with the
notion of field and potential, and be comfortable with how these things are
different from force and potential energy. You should also be familiar with
three different representations of the gravitational and electric field: the field
map representation (§9-1-3-3), the field line representation (§9-1-3-3) and the
equipotential representation (§9-1-4-2). The magnetic field is quite different
in character, as explained in detail in §9-3. For the magnetic field, only the
field map and field line representations are useful.

105



106 CHAPTER 9-1. FIELDS

9-1-2 What are fields?

The idea of a field is that there is some physical quantity that has a value
“everywhere”, that can either change from location to location or can stay
the same. Both fields that vary in space and fields that are constant in
(regions of) space are important. A field can also change in time, so any field
that we discuss is a function of both position and time. While this is an easy
thing to state, it is rather abstract, so let us become more familiar with this
definition by looking at some examples:

Temperature field

Courtesy of the National Weather Service

The weather map on the news is an example of a field. There is not one
universal temperature; the temperature depends on when you ask (which is
why the map changes day to day) and where you are asking about. The
question “what is the temperature?” does not mean much, as the tempera-
ture varies from place to place and changes in time. A question like “what is
the temperature in San Francisco now?” can be answered because we have
specified both the place and the time.
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A couple of points to note about the weather map:

• It shows temperatures at a particular time, so what is being shown is
T (x, y, t = today). The full field T (x, y, t = today) could be represented
by an entire archive of all previous (and future!) temperature maps.

• On this weather map the temperature is given at a number in certain
locations, and at places with low population densities is given as a
colour.

• On some weather maps the temperature is only shown for selected
locations. Even in the places where a temperature is not shown there
is a temperature.

Topographical field

Contour map of Yosemite National Park, courtesy of the National Atlas of the
United States

A topography map answers the question “what is the height at this location
at this time?”. Because the Earth does not shift quickly, we can neglect that
it depends on time.

Displacement field

In unit 8 we characterised material waves by looking at y(x, t), which repre-
sents the displacement of the wave from its equilibrium position. Thus the
displacement depends on both the location being discussed (x) and the time
(t) and the wavefunction y(x, t) is a displacement field.
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Wind field

Map courtesy of WeatherFlow, Inc.

A wind map shows the velocity of the wind at various locations at a fixed
time. This is different from the previous examples because when we look at
a particular place and time the field gives us a vector – both the wind speed
and direction. For this reason, the wind field is a vector field. The previous
examples gave us a number at every point in space, as those were examples
of scalar fields.

Summary

If a quantity can vary in time and space, then we introduce the idea of a field
to reference what its value is at a specific time and location.

In our examples we have also seen two very different types of fields. Our
first three examples were scalar (number) fields. This is because if we asked,
for example, “what is the temperature in Davis at 3:30 p.m.?” the answer
that we would get back is a number. The wind field was different, because
if we asked “what is the wind doing in Davis at 3:30 p.m.?” the answer
we would receive would have both a magnitude (the speed of the wind) and
direction. That is, the complete answer to our question would be a vector.
For this reason the wind field is referred to as a vector field. The fields we
will use the most (gravitational, electric and magnetic) are all vector fields.
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Warning: definitions can be taken too far

There are also examples that fit into our definition of field that are probably
not useful. For example, I could define an elephant field in the following
way: give me a specific position and a specific time, and the elephant field
will tell you how many elephants were there. While it does fit into our
definition, it is not a useful thing to do – it is still far easier to talk about
individual elephants. So far we cannot use the elephant field to make any
new predictions, it is not required by any experiments and does not simplify
any discussions.

The point being emphasised here is worrying about whether or not some-
thing is a field is not particularly useful. The philosophy embraced here
is that we shall consider a quantity to be a field if it is either required by
experiment or if it is convenient.

9-1-3 Fields in physics

There are three fields in which we will be interested in for physics 7C: the
gravitational field, the electric field and the magnetic field. The most familiar
of these is the gravitational field, and so the motivation for using fields will
start here.

Let us start by making a simple statement, which is very imprecise: the
Earth’s gravity is stronger than the Moon’s gravity. Justification for this
statement comes from watching videos of the astronauts on the Moon and
we see that they fall slower and can leap higher. This is adequate for the
“person on the street”, but in science we must be more precise. What does
this statement actually mean? If we calculate the force of the Moon on the
Apollo lander, this is much greater than the force of Earth on an apple.
Therefore we cannot make the blanket statement that the force of gravity
on Earth is always greater that the force of gravity on the Moon.

The solution to this “problem” is rather simple: we need to compare apples
to apples. If we ask what FEarth on apple is and what FMoon on apple is then
we find FEarth on apple> FMoon on apple. More generally, it is true for any
object X:

|FEarth on X(at surface of Earth)| > |FMoon on X(at surface of Moon)| .
This is a more precise version of what we mean when we say that the Earth’s
gravity is stronger than the Moon’s gravity.
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We can actually do a little bit better than this. The force of gravity does
not distinguish between apples, oranges or skyscrapers. If we could build
a skyscraper with the mass of an apple, FEarth on skyscraper would be the
same as FEarth on apple! What this tells us is that to compare the strength
of the gravitational field we don’t need to use exactly the same object, but
only two objects with the same mass.

Now let us tie this to the concept of a gravitational field. Recall from
Physics 7B that the force of gravity between two spherical masses is∣∣∣FObject 1 on Object 2

∣∣∣ =
GM1M2

r2
= M2

(
GM1

r2

)
(9-1.1)

where r is the centre-to-centre distance, and the direction of the force pulls
the masses together. G is known as the universal gravitational constant, and
is equal to 6.67×10−11 N m2 kg−2. Unlike g, which is a constant on the surface
of the Earth but different elsewhere, G is a universal constant meaning that
it takes the same value regardless of the problem we are doing. It is because
this G is so small that we do not notice the gravitational attraction of objects
around us unless one of these objects has an enormous mass.

If we want to talk about “how strong” Earth’s gravity is, equation (9-1.1)
won’t do as it requires a second mass. Let us get around this by asking the
question “what would the force of the Earth be on an object of mass 1 kg
located a distance r away, if it were put there”. Now we can calculate this:∣∣∣FEarth on 1 kg object

∣∣∣ = (1 kg)×
(
GMEarth

r2

)
.

If we agree to always compare the gravity of an object by referring to what
the force would be on a second 1 kg mass then we can compare this between
different masses. The choice of a 1 kg mass was arbitrary, the only important
thing is we always choose the same reference mass. The quantity in the
brackets, which refers to the Earth and the distance away from it, is the
gravitational field of the Earth. We denote this gEarth:

|gEarth| ≡
GMEarth

r2

But not all masses in the world are 1 kg! But once we know gEarth we can
easily calculate the force on any other mass:∣∣∣FEarth on object

∣∣∣ = Mobject

(
GMEarth

r2

)
= Mobject |gEarth|
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This is just FEarth on object = MobjectgEarth. We have seen this relationship

many times before (this is why we chose to call the gravitational field gEarth

rather than some other letter). We should keep in mind that gEarth does
depend on r, the distance from the centre of the Earth to the centre of the
object.

9-1-3-1 The direct and field model of forces

In the way that we have introduced the gravitational field the field is simply
a shortcut. Instead of saying “the force a 1 kg object would feel if placed
here due to this source is 5 N” we can simply say “the gravitational field
of the source here is 5 N/kg”. The field is not necessary to determine the
gravitational force between two objects, it is simply convenient. We will see
later in §9-4-5 that we actually need to talk about fields if we want energy
and momentum to be conserved, but for now we will simply treat them as a
shortcut.

With this in mind, we have two separate ways of discussing how a gravi-
tational force acts between two objects. The first is called the direct method
where we calculate the force by putting numbers into Newton’s gravitational
law (9-1.1) without any reference to the field:

Direct model:

Object #1
creates
force on
=⇒ Object # 2

The other way we could think about this is in our new language of fields,
which is to think of one mass creating the field and another feeling its effects:

Field model:

Object #1 (“source”)
creates
field
=⇒ gobj #1

exerts
force on
=⇒ Object # 2 (“test”)

This is referred to as the field method, because instead of thinking of one
object directly exerting a force on another we think of one object (referred
to as the “source”) creating a field and then that field creates a force on
the second object (referred to as the “test object”). Of course, as these are
calculations of the same thing they both give the same answer. The following
example will give an idea of how these two approaches compare:

Example #1:
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a) What (gravitational) force does the Earth exert on a 2 kg book sitting
on its surface?

b) What gravitational force does the Earth exert on the same book 10,000
km above its surface?

Use both the direct and field methods.
(The mass and radius of the Earth can be found in appendix A)

Solution:
Part a) Direct method
By looking up the mass and radius of the Earth we find

FEarth on book =
GMEarthMbook

r2
Earth

=
(6.67× 10−11 N m2 kg−2)(5.98× 1024 kg)(2 kg)

(6380000 m)2

= 19.6 N

Part a) Field method
We know that gEarth = 9.8 N/kg at the surface of the Earth. Normally we
approximate this to 10 N/kg, but let us be more precise for this example.

FEarth on book = MbookgEarth = (2 kg)(9.8 N/kg) = 19.6 N

Notice how the calculation was much easier, since we already knew gEarth.
Part b) Direct method
This proceeds almost exactly the same as before. The two tricky points here
are that we have to recall that r is the distance from the center of the Earth,
and to change 10,000 km into metres.

FEarth on book =
GMEarthMbook

(rEarth + 10, 000 km)2

=
(6.67× 10−11 N m2 kg−2)(5.98× 1024 kg)(2 kg)

(6, 380, 000 m + 10, 000, 000 m)2

= 3.0 N

Part b) Field method
We don’t know gEarth at a distance of 10,000 km from the surface of the
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Earth off the top of our head, so we have to calculate it first.

gEarth(10,000km above surface) =
GMEarth

(rEarth + 10, 000 km)2

=
(6.67× 10−11 N m2 kg−2)(5.98× 1024 kg)

(6, 380, 000 m + 10, 000, 000 m)2

= 1.5 N/kg

Now we can calculate the force the Earth exerts on the book:

FEarth on book = MbookgEarth = (2 kg)(1.5 N/kg) = 3.0 N

Because we did not know gEarth before starting the problem the field
method was longer. But if we were asked to do the same calculation for a
different mass 10,000 km above the Earth’s surface we now have gEarth and
could do it much quicker.

9-1-3-2 Which mass creates the field?
(Newton’s third law)

In the example above, when using the field method we decided that the Earth
would create the field and the book would respond to it. This seems quite
acceptable, as we are used to the Earth exerting a gravitational force. But
what if we decided to use a book and a chair in our example? Which would
be the “source” for the gravitational field, and which would be pulled by the
field?

To try and work out the answer to this question, let us think about the
same problem using the direct model of forces. Calculating the magnitude
of the force of the book on the chair gives

|FBook on chair| =
GMbookMchair

r2
,

where r is the distance between them1. Now let us calculate the force of the
chair on the book:

|FChair on book| =
GMchairMbook

r2
= |FBook on chair|

1“Consider a spherical chair. . . ” – it turns out the corrections due to these objects not
being spherical is unimportant.
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These forces have the same magnitude, but pull in opposite directions. This
is not a coincidence, but is a consequence of Newton’s third law that we
learned in 7B:

FA on B = −FB on A.

In the language of the field model we see that the answer is both the chair
and the book create a field. To do the complete problem in the field model
we would have to look at

Book
creates
field
=⇒ gBook

exerts
force on
=⇒ Chair

and

Chair
creates
field
=⇒ gChair

exerts
force on
=⇒ Book.

An important consequence of this is that to be affected by a field, an object
must also create a field of the same type. Note that an object does not feel
its own field, only the field of all external objects. But if it feels an external
gravitational field, it must also create its own gravitational field to be felt by
other objects.

While an object that feels a field must also create the same field, when we
are emphasising an objects ability to create a field we refer to it as a source
object. When we talk about the object responding to an external field, we
talk about a test object. For gravity, any object with mass is a source object.
For the electric field, any object with (electric) charge is a source object. For
magnetism, as discussed further in section §9-3 the source is moving electric
charges.

Test yourself:

In the example Section 9-1, ex. #1 would we have to worry about the force
of the book on the Earth? If not, why not?

9-1-3-3 Field lines

We have learned in section 9-1-3-1 that for point or spherical masses that the
gravitational force between them is given∣∣∣Fspherical mass on 1 kg

∣∣∣ = (1 kg)×
(
GMspherical

r2

)
= (1 kg)|gspherical|.
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Therefore we can deduce that the gravitational field created by a spherical
or point mass is

|gspherical| =
GMspherical

r2

where r is the distance from the center of the object. The direction of the
gravitational field is always pulling inward. Like the wind map, we pick a set
of points and draw vectors indicating the direction of the gravitational field:

Earth

This is called a field map of the field. It is the simplest representation of a
vector field, as we only have to look at the point in which we are interested
to find the strength and direction of the field. Remember that the vectors
only refer to the value of the fields at the location that they start, and that
the actual length of the vectors is arbitrary – there is an implicit scale to
convert an arrow on the page to the correct units2. The ratio of lengths at
two different locations is not arbitrary – it tells us about the ratio of the field
strength at those two locations.

If we look at the previous field map of the Earth’s gravitational field, a
long way from the Earth it is almost impossible to read the direction of
those arrows. We could enlarge them, but then the arrows near the Earth
would have to be enlarged too. If they are enlarged too much they will
“poke through” the Earth and become messy. The size of the arrows also
means that we get limited information from this picture. To address these
shortcomings, we introduce a different representation of a vector field by
using field lines .

To construct field lines, we draw a continuous lines starting at a point and
always going in the direction of the field. An example for the Earth is shown
below:

2This is not new, this was also the case for the force vectors in force diagrams that you
have seen in Physics 7B.
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Earth

Notice that we can no longer simply “read off” the strength of the field at a
particular point as we did on the field map. However this picture contains
all the information as the vector map pictures. While we cannot look at the
length of the arrows to get the strength of the field, we can instead look at
how closely packed the field lines are. The closer they are (by the Earth),
the stronger the field. The further apart the field lines are, the weaker the
field.

If we start with the field line diagram, we can construct the field at any
given point the following way:

• Direction: Take a tangent to the field line at that point. This is the
direction the field will be going.

• Magnitude: Given by the “density” of the surrounding field lines.

Vector map
Pros Cons

Can read off direction Hard scaling issues
Can read off magnitude and readability issues

Field lines
Pros Cons

Scales well for forces that
differ in magnitude.

Must work to reconstruct
the magnitude of the field.

Direction easy to read

While the vector map is the most direct representation of the field, we
will frequently prefer to use the field lines.

Gauss’s law

One thing that has not been made explicit in the discussion of field lines so
far is that they cannot just start or stop in any location. For gravity, all
the field lines start a very long distance away and can only stop when they
encounter a mass. If there are no masses in a particular region then the field
lines cannot be created or destroyed; they simply keep going. The number
of field lines that stop is proportional to the mass of the object encountered.
Thus not all the field lines will “stop” because they hit the satellites that
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orbit the Earth, although a few will. Don’t worry about field lines passing
through physical objects – remember that they are only a representation of
the field.

For the electric field, field lines can start on positive charges and end on
negative charges. This makes electric cases slightly more subtle, because if
the number of field lines entering is the same as the number leaving it could
be that the region has no charges in it or it has an equal number of positive
and negative charges. For electric fields looking at the number of field lines
entering and exiting a region only tells us about the net charge in the region,
not how many individual charges are in that region.

In either case, in region with no mass (for gravity) or net charge (for electric
field lines) the field lines cannot be created or destroyed. Therefore if the
number of field lines entering a region is different from the number leaving
we must have a source (i.e. a mass or charge) in that region. By knowing
the difference, we can figure out exactly how much mass (for gravity) or net
charge (for electric fields) is in the region. This is the essence of Gauss’s law,
which we now make more precise.

Think of an imaginary closed surface, meaning that it has an inside and
an outside. Here the term “inside” does not have its colloquial meaning; a
shape that has an “inside” in this sense means that you cannot get out unless
you go through the surface. A box with a lid is a closed surface, but a glass
is not as there is a hole at the top (where we tip liquids in or out). Even
though I have used physical objects for my examples, we can use any shape
our imagination desires provided that it is a closed surface.

Not closed Closed

LidNo
Lid

Once we have our closed surface, we can ask how many field lines enter it,
and how many leave. As it is closed, the only way a field line can get in (or
out) is by going through this surface. If a different number of field lines come
in than go out, we know that field lines are being created or destroyed inside.
That is, there is a mass inside (if we are looking at gravitational field lines)
or a net charge inside (if we are looking at electric field lines). If there is no
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difference between the field lines entering and leaving there is no mass inside
or no net charge, as overall no field lines are being created or destroyed3.
The number of field lines going through the surface is referred to as the flux.
Gauss’s law is simply the statement that

Net flux ∝ (# field lines entering)− (#field lines leaving)

∝

{
total mass inside surface (gravity)

total charge inside surface (electric)

A useful analogy to a closed surface and field lines is a leaky bucket filled
with water. The bucket is not closed, but you can imagine a surface con-
sisting of the actual bucket and a lid. If water is leaking out of the bucket,
it is also leaking out from the inside of this imaginary surface. Therefore
the water must be passing through the surface. As the water cannot pass
through the bucket, this must mean the bucket has a hole in it!

Of course, you did not need to go through all this to figure out your bucket
has a hole in it. But this familiar example is exactly what we do with fields
– if the field lines are coming out from somewhere then something is creating
them. If we are losing field lines in a region, something is destroying them.

Gauss’s law and magnetism?*

So far Gauss’s law has been discussed for gravitational fields and electric
fields, but no mention of magnetic fields has been made. That is because,
to the best of our knowledge, there are no “magnetic charges”. Instead
all known magnetic fields are created by moving electric fields, and as a
consequence magnetic fields do not “start” or “end” but instead make circles.
Because magnetic field lines never start or end the number of magnetic field
lines entering a surface is always equal to the number of magnetic field lines
leaving that surface.

3In the case of the electric field, we cannot quite say this. Instead, we should say that
the number of field lines being destroyed (by hitting a negative charge) are equal to the
number being created. The amount of positive and negative charge must be the same, so
there is no net charge.
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9-1-4 Potentials and equipotentials

9-1-4-1 Gravitational potential

In Physics 7A, we tied together the idea of potential energy and force. We
learned that the magnitude of the force was given by the slope of a PE vs. r
graph. Just like a force is between two objects, the potential energy is always
an energy between two objects.

What we would like to do in this unit is to talk about energy (or something
like it), but only for one object. We got around this same problem with forces
by introducing a new concept – fields – which answered the question “what
would the force on a 1 kg object if it were placed a distance r away from
the source?”. What to do with potential energy is now obvious; we should
invent a new concept that essentially answers the question “what would the
potential energy be for a 1 kg object placed a distance r away from the
source?”. The name for this new concept is potential and it is represented by
U . The name is an unfortunate choice because while it is closely related to
the potential energy they are not the same thing. The relationship between
the two is

PEgrav between obj 1 and obj 2 = M1U2

This equation reminds us that it does not matter which object is considered
the “source”, although in cases where one object is much bigger than the
other it is conventional to treat the larger object as the source.

For a point mass, or a spherical mass of uniform density, the equation for
the potential is relatively straight-forward:

Ugrav = −GM
r

+ U0 (9-1.2)

where r is the distance from the centre of the mass creating the field. Here
U0 is some arbitrary value. In Physics 7A we learned that the potential
energy could not be measured; it was the changes in potential energy that
could be observed. Absolute potential cannot be measured either, instead
only changes in potential are observable. If we add the same constant to the
potential everywhere, there is no experiment that can tell the difference.

Notice that far away from the mass we have Ugrav ≈ U0. We will find it
convenient to adopt the convention that the gravitational potential goes to
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zero a long way from the source. This corresponds to choosing U0 = 0, in
which case the potential for our point or spherical mass is

Ugrav = −GM
r

As we get further in, the potential is negative, and because mass is always
positive this tells us that the gravitational potential energy is negative.

Let us compare the gravitational potential energy (with zero at infinity)
with the Lennard-Jones potential energy you looked at in 7A. There the
PE went to zero as r became large (again, by convention), and because the
potential energy was negative the total energy could be negative as well.
If the total energy of a system was negative this indicated the system was
bound, as the kinetic energy cannot be negative. Similar reasoning applies
in the gravitational case.

Test yourself:

Starting with (9-1.2), can you get the formula for the potential energy be-
tween two masses? Can you go from there to calculate the force between two
objects?
(See the diagrams in section 9-1-6 for help).

Test yourself:

Is the total mechanical energy of the Earth (i.e. KE + PE) positive, negative
or zero? How can you tell? For this question, take PE = 0 to be a very long
way out of the solar system. (Hint: Remember that the Earth is orbiting the
sun)
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3 m

2 m

1 m

No work needed to move an object 
along an equipotential

Figure 9-1.1: The height above the ground is the most familiar example of
equipotentials (shown as dashed lines).

9-1-4-2 Equipotentials

An equipotential (i.e. “equal potential”) is the continuous curve along which
every point is at the same potential. As a consequence, it takes no work
to move along an equipotential. From this we can conclude that the force
has no component in the direction of motion. The most familiar example of
equipotentials are the height above the ground, as shown in figure 9-1.1. We
know that the mass only gains gravitational potential energy if the height
changes, but moving it horizontally (i.e. along an equipotential) does not
change the gravitational potential energy.

For the electric and the gravitational field, the force is always in the direc-
tion (or against the direction, for negative charges in an electric field) of the
field lines. An equipotential cannot move with or against the field, as this
would mean an object would gain or lose potential energy. All equipotentials
are at 90◦ to the field lines, and any given equipotential only intersects a given
field line once. If an equipotential intersected a field line twice that would
mean it was possible to move with (or against) the field and not change the
potential energy of an object which is impossible.

We can use the fact that equipotentials and field lines are perpendicular
to reconstruct one from another. Let us take the Earth again, as it has been
our example for all concepts in this chapter. We have already introduced
the field line picture in section 9-1-3-3. We know that the equipotentials
in this case (shown as dashed lines) are all spheres as U only depends on r
for a spherical mass. But even if we did not know this, we would be able
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to reconstruct the equipotentials by drawing lines perpendicular to the field
lines as shown below:

Earth
Earth

Reconstructing field lines from equipotentials

While every sphere is an equipotential, we choose to only draw selected
equipotentials. We draw equipotentials that are equally separated in poten-
tial, but not in space. For example, the equipotentials shown in the above
figure may be −6× 106 J/kg for the one closest to the Earth, −5× 106 J/kg
for the middle equipotential and −4 × 106 J/kg for the outermost equipo-
tential. We see that even though that the equipotentials drawn change by
1 × 106 J/kg, they are not spaced evenly. As the equipotentials get further
apart, we have to travel further with (or against) the field to get the same
change in potential. This tells us that the field gets weaker. Finally, notice
that if we only had the equipotentials (as on the diagram above on the right)
we could reconstruct the field lines.

Another example of equipotentials is the example of a topographical map,
as shown as an example of a “height field”. The contours show locations of
constant height, and close to the Earth’s surface we have

U =
PEgrav

m
= gh

so lines of constant height h are also lines of constant U . The closer the
equipotential lines are, the steeper the slope and the greater the combined
force of the ground and gravity are on an object.

9-1-4-3 Force and equipotentials

So far we have the idea that the closer the equipotentials are, the stronger
the field. In fact we can make this relationship precise:

|g| =
∣∣∣∣dUdr

∣∣∣∣ ≈ ∣∣∣∣∆U∆r

∣∣∣∣ .
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Here ∆r is the shortest distance from a point on one equipotential to a point
on a neighbouring equipotential. The direction of the field is in the direction
that the equipotentials are closest together.

In terms of “equipotentials” on the hill this means that the steeper the
hill, the smaller ∆r, and the larger acceleration an object placed on this hill
would experience. This is not an explanation of why the acceleration of an
object would be greater – for that you should go back to force diagrams of a
ball on a hill – but it is a convenient way of mapping the acceleration that a
ball would feel. This is analogous to writing the gravitational equipotentials
– they are a convenient description, but they do not explain why the field is
the way it is. While the hill serves as a good analogy, it is important to note
that we are looking at the combined effect of gravity and the ground when
discussing the acceleration of a ball. The gravitational field does not change
significantly on a hill! An example with just the gravitational field is given
in example # Section 9-1, ex. #2.

Example #2:
Two equipotentials close to the surface of the Earth have a potential differ-
ence of 1 J/kg. How far apart are they?

Solution:
We begin by taking gEarth = 10 m/s2. We are interested in making steps of
∆U = 1 J/kg every equipotential. This tells us that the equipotentials are
separated by

∆r =
|∆U |
|gEarth|

=
1 J/kg

10 m/s2 = 0.1 m

30 cm

20 cm

10 cm

50 cm10 cmGravitational field 
direction

When we say the separation of the equipotentials is 10 cm, we mean that
the closest the next field line gets to the point in which we are interested
is 10 cm. The fact that the distance can get longer (for example, 50 cm as
shown in the diagram) is completely irrelevant. The direction of the field is
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perpendicular to the equipotentials, going from a high equipotential to a low
equipotential. In this case, the equipotentials are closest vertically and the
potential decreases in height, leading to the (already known) conclusion that
gravity points down.

Example #3:
The 1 J/kg equipotentials at the surface of Pluto are separated by 1.6
metres. Is the gravitational field on the surface of Pluto stronger or weaker
than the gravitational field at the surface of the Earth?

Solution:
The equipotentials are spaced further apart (larger ∆r) for the same ∆U .
Therefore the gravitational field at the surface of Pluto is weaker than the
gravitational field at the surface of the Earth.

Notice that this does not explain why Pluto has a smaller gravitational
field than Earth. To figure that out we would look at Pluto’s mass and size
compared to Earth. But if someone has already calculated the field or the
equipotentials for us, we can still use that information to answer questions.

9-1-4-4 Potentials don’t always exist*

As we learned in Physics 7A, the work done moving an object around is not
a state function. This meant that the amount of work it took to move an
object from one location to another could depend on more than the initial
and final points; it could also depend on how you went from the initial to
final point!

If the amount of potential energy a charge loses depends on the path taken,
then it would seem that the change in potential would depend on the path
taken as well. But this makes no sense: the potential is defined at a particular
point without a reference to a path. To calculate the change in potential we
simply take the difference of the potential at the two end points! Therefore,
if the change in potential energy of an object depends on the path taken,
then the potential does not exist! (There are other things that can happen
that can prevent a potential from existing as well).

Let us show an example where it is impossible to construct a potential by
showing it is impossible to construct an equipotential. Consider the vector
map shown on the left:
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Construct equipotentials: make perpendicular to field
All equally spaced!

This is not completely artificial; as we learned in 7B the water velocity in a
real pipe is like this. The friction on the sides reduce the velocity to zero, and
the velocity is highest in the centre. Our first attempt at constructing equipo-
tentials will use the rule that the equipotentials are always perpendicular to
the field lines. Because all the field lines are horizontal, our equipotentials
will be vertical, as shown above on the right. But there is a problem with
this; as the field gets weaker (toward the edges) the equipotentials should
be getting further apart. But the equipotentials cannot stay perpendicular
to the field and get further apart: the first condition requires them to be
vertical, the second requires them to bend. In this simple example, there are
no equipotentials! This tells us that the potential does not exist either, and
with a little bit of work you could show that the work required to move a
charge through an electric field like this would depend on the path taken.

The fact that we have two requirements that are not both automatically
satisfied tell us that equipotentials only exist in very special circumstances.
The cases that we are concerned with where potentials (and equipotentials)
don’t exist are

• A changing electric field (this is actually essential to induction, intro-
duced in §9-3-4). This is because the electric field creates closed loops,
as pointed out in §9-4

• The magnetic field never has a potential, as the magnetic field cannot
do work. We will learn in §9-3-2-1 that the magnetic force is always
perpendicular to the direction a charge travels, so W = |F‖|∆x must
be zero.

9-1-5 Superposition

So far the general principles of fields have been introduced by using a spherical
or point mass as an example. For this case, we have a general formula for
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the gravitational field

gmass M =
GM

r2

where the direction is always pointed toward the mass M .

If we have two point-like or spherical masses, then we use superposition.
When we used this word with waves in section 8-2, this meant that we added
the two waves together to find the total displacement. When we use it for
fields this means that we figure out what the field from the first mass is at
the point of interest, then what the field from the second mass is at the same
point and add them together. It is critical to remember in the last step that
we are adding them as vectors4! Another important point to remember:
We will never add field vectors at different locations. Any time we “super-
pose” anything, we will be looking at the effect from two (or more) different
sources on the same location at the same time.

Example #4:
Draw a vector map for the gravitational field of two separated spherical balls
of equal mass. i.e. pick a reasonable number of points at which to evaluate
the field.

Solution:
Let us start by drawing two pictures of the situation. On the picture on the
left we only include the field from “ball 1”, and on the right we only include
the field from “ball 2”. These sketches are only rough, but they show that
as we get further from the source the field gets weaker, and the direction of
the field is always toward the source.

Field from "Ball 1"

Ball 1 Ball 2

Field from "Ball 2"

Ball 1 Ball 2

Now we have to put these two fields together, and add them the fields as
vectors. On the left hand side are both of the fields before doing the vector
sum, and on the left is the total vector field (i.e. after doing the vector sum).

4Technical aside: because superposition is the most reasonable thing to do, it is some-
times easy to forget that we are assuming something here. Superposition of (weak) gravi-
tational fields is an experimental conclusion, not one that can be made by purely logical
thought.
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Both fields together

Ball 1 Ball 2

The total field

Ball 1 Ball 2

We now have enough information to deal with an arbitrary mass distribu-
tion. We can think of taking any distribution of mass and breaking it into
a lot of different point masses. We can figure out the field from these point
masses on any point, and then add these contributions together to find the
total gravitational field. This would involve a lot of work, but at least we
know how to do it in principle.

9-1-6 Relationship between concepts

While the gravitational and electric fields are very different, they share many
of the same relationships. Here some diagrams summarise how to translate
between our new concepts of fields and potentials back to the familiar con-
cepts of forces between two objects and the potential energy between those
objects. These diagrams are different but have very similar structure. The
main difference (other than the names of the field) is that in the electric case
to move “horizontally” between old and new concepts we use the electric
charge, while for the gravitational field we use the mass.

On the other hand, the analogous diagram for the magnetic field is very
different. That is because there is no analogue of magnetic potential energy.5

Electric field/force/potential relationships

Potential exists for time-independent electric fields only

5Technical aside: The magnetic field can store energy, as can the electric field. This
is not the same as the potential energy a charge stores in the field, as this represents the
ability of the field to do work on the charge.
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Force F Field E

PE Potential V

F = qE

E = F /q

PE = qV

V = PE/q
-

�

-

�

6

?

6

?

|F | = magnitude of slope on

PE vs r graph

|E| = magnitude of slope on

V vs r graph

Gravitational field/force/potential relationships

Force F Field g

PE Potential U

F = mg

g = F /m

PE = mU

U = PE/m
-
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-
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6

?

6

?

|F | = magnitude of slope on

PE vs r graph

|g| = magnitude of slope on

U vs r graph

Magnetic field/force relationships

Force F Field B

|F | = qv⊥|B|

|B| = |F |/(qv⊥)
-

�

The magnetic field has no potential, and also depends on the velocity.
The direction of the magnetic force is not is not in the same direction of the
magnetic field; the relationships above are for the magnitudes only. Finding
the direction of the magnetic field is a little bit involved, and this diagram
should make more sense after studying the magnetic field in chapter 9-3.
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9-1-6-1 Relationship between representations

We now know three different representations of a field: using a field map,
field lines or equipotentials.

• Field map
Introduced in section 9-1-3-3
In the field map representation, we calculate the vectors at certain
points at a given time. Usually these points are taken to lie on a grid.
We then draw vectors to scale to indicate the direction and magnitude
of the field. This is the most direct representation of the field, but
when the field varies wildly in magnitude it is difficult to make the
small vectors large enough to be seen while keeping the large vectors
from extending too far. It also involves a lot of work to calculate.

• Field lines
Introduced in section 9-1-3-3
This representation tries to fix some of the problems with the vector
map representation. Here the field lines are joined together to make
continuous field lines. To recover the direction of the field at a partic-
ular point, we need to take a tangent of the field at that point. The
spacing between the field lines indicates the magnitude of the field; the
denser the lines the greater the magnitude of the field.

• Equipotentials
Introduced in section 9-1-4-2
The lines of equal potential. These are always at 90◦ to the field lines,
and we don’t lose potential energy moving along them. (Note: these
do not exist for magnetic fields). Regions where the field is strong the
field lines are close together.

The table below summarises how to read each one, and how to go from one
representation to another.
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Quantity How to read vector field (e.g. E, g) with
Field map Field lines Equipotentials

Magnitude Length of vector starting at
point

How dense field lines are. How far apart two neigh-
bouring equipotentials are

large field Long arrow at point dense field lines close equipotentials
small field Short arrow at point sparse field lines separated equipotentials

Direction Direction of arrow at point Direction of tangent to field
line at point

Direction of normal to field
line at point

→ field lines Connect arrows by curves —- Take equally spaced normals
along a equipotential. Then
extend these normals, bend-
ing them so they are always
normal to any equipotential
you cross.

→ equipotentials Make into a field diagram
first (as above)

Take a normals along a field
line. Extend these nor-
mals, bending them so that
they are always perpendic-
ular when crossing another
field line.

—-

Example #5:
Show the gravitational field lines and the equipotentials for two separate
balls of equal mass. You can start from the field map given in Section 9-1,
ex. #4.

Solution:
Field lines:
To go from the vector map to the field line map, we try and connect the
field line arrows in a smooth manner. A rough drawing is shown below:

Equipotentials:
To find the equipotentials we start on a field line and draw across it perpen-
dicular. Then we continue the field line, and keep bending it to ensure that
it is perpendicular to the next field line it crosses. A rough sketch to do this
is shown, where the dashed lines are the equipotentials.
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How close is this to the “true” answer? A computer generated answer shows
us the true equipotentials:

Ball 1 Ball 2

We see that our answer captured most of the correct answer. One of the
reasons potentials are so useful for physicists is that they are easy to calculate
exactly and generate plots like the one above. In this course, which does
not emphasise computation, there is no real advantage to constructing the
equipotentials first and then the field lines or vice-versa.

9-1-6-2 Relationship between fields and waves

The examples of the gravitational and electric fields shown in this chapter
have all involved stationary sources, and hence the fields have not changed
in time. However if we get the sources to move, then the field at a particular
location starts to change in time as well. If we disturb the charges, this
disturbance propagates outward like a wave pulse. If we make the field vary
periodically then we get waves in the field that are identical to the waves we
studied in the beginning of the course. In the case of the electric and magnetic
fields this sort of oscillation is what we commonly call “light”. This fact is
so important that it bears repeating:

• A field can oscillate, producing a travelling wave.

We will return to this idea in more detail after we have introduced electro-
magnetic waves in §9-4-5.
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Up until this point we have been using a field as a convenience, but it
seemed like we could always just use the direct model of forces and not have to
deal with it. The fact that we can get fields to generate waves that transport
energy (and momentum) tells us that there is more to it than that. If we did
not count the field as real, one system would lose energy, that energy would
remain lost, and sometime later another system may gain energy – throwing
energy conservation out the window! If we consider the field as a physical
entity in its own right, rather than just a trick, the description changes: now
a system can transfer energy to the field, the field transports that energy as a
wave, and then the field transfers the energy to another physical system. We
see that fields are more than a trick, but are required if we want to preserve
the conservation of energy!

9-1-7 Summary

This chapter has introduced many new ideas related to fields, using the
gravitational field as the primary example. In the upcoming chapters the
electric and magnetic fields are also discussed, so do not be concerned that
their treatment in this chapter was brief. The main concepts introduced
were:

1. That a field was a physical quantity that was not in a specific place,
but spread out. A field can also change its value in time. It is different
from a wave because a wave must change its value in time.

2. A force is an interaction between two objects. A field is created by a
single object.

3. The fields we will be interested in are vector fields, meaning that the
field has a direction and magnitude at every location in space.

4. When using the field model, one object (the “test” object) feels the
field created by everything else (the “source” objects). To find the field
created by everything else we use superposition.

5. An object does not feel its own field.

6. Representations of vector fields:

• A vector map:
A “snapshot” of the field vectors at a particular time. (e.g. wind
map)
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• Field line map:
A “snapshot” of the field, but with continuous lines. The direction
of the field at any point is tangent to the field lines. The strength
of the field lines is determined by how close together the field lines
are. If they are bunched up the field is strong, if they are spread
thinly the field is weak.

• Equipotentials: (not for magnetic fields)
If a potential exists, then the equipotentials are the directions
where we would not have to do any work to move the object.
That is, we are not going “with” or “against” the field. The
equipotentials are always at 90◦ to the field lines. (e.g. contour
map as equipotentials of gravitational field)

7. An electric field line starts on a positive charge and end on negative
charge.

8. A gravitational field line start at infinity, and end on a mass (no “neg-
ative masses”).

9. Magnetic field lines close in on themselves; they never start or end.

9-1-8 Exercises

1. A 1 kg mass and a 5 kg mass sit in the same gravitational field at the
same location. For which mass is Fgrav field on mass greater?

2. Estimate the force of the Moon on you as you stand on the surface
of the Earth. Also estimate the force of the sun on you as you stand
on the surface of the Earth? Will the answer change between day and
night, and is this change significant? Which is stronger – the pull of
the Moon or the pull of the Sun?

3. Where is the location which has equal magnitude for gEarth and gMoon?
Draw a picture of the Earth and the Moon and indicate the approximate
location with an “x”. Check your answer: should the “x” be closer to
the center of the Earth, or closer to the center of the Moon?

4. If we have a planet half the radius of the Earth, but the same mass will
the gravitational field on the surface of this planet be greater than, less
than or equal to the gravitational field on the surface of the Earth?
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5. If a ball of mass 2 kg is thrown vertically upward from the surface of
the Earth at a speed of 10 m/s how high would it go before stopping?
Ignore air resistance. Hint: Use an energy conservation argument.
Should you use PEgrav = mgh or PEgrav = −GmM/r? Do you get a
significantly different answer by making a different choice?

6. If a ball of mass 2 kg is thrown vertically upward from the surface of
the Earth at a speed of 10,000 m/s (i.e. very fast) how high would
it go before stopping? Ignore air resistance. Hint: Use an energy
conservation argument. Should you use PEgrav = mgh or PEgrav =
−GmM/r? Do you get a significantly different answer by making a
different choice?



Unit 9:

9-2: Electric fields
Almost all of the main ideas about electric fields were presented in the pre-
vious section about generalised fields (section 9-1). If you have not read that
section, return to it and read it now.

This section will help you apply the ideas that were somewhat familiar in
a gravitational context to a new arena. By the end of this section, you will
understand the ideas of electric charge, electric force, electric field, electric
potential energy, and electric potential.

9-2-1 Electric charge

Previously, we said that the Earth’s gravity is stronger than the Moon’s
gravity. We were able to quantify this statement by determining that, at
its surface, Earth has a greater gravitational field than the Moon. We were
able to quantify this statement by determining that, at its surface, the Earth
has a greater gravitational field than the Moon. This meant that a given
mass felt a greater gravitational force on the surface of the Earth than on
the surface of the Moon. We learned in section 9-1 that the strength of the
gravitational field was determined by a spherical mass and the radius of the
body, and numerically it can be shown that the Earth’s gravitational field is
greater.

To make an analogous argument about electric fields, we must determine
the electric analogue to mass. It will probably come as no surprise to you
that this analogue is charge. The greater an object’s charge, the greater
electric field it will produce at the same distance from the object. Nearly all
our ideas about mass can transfer to our discussion of charge, with one clear
difference. Unlike mass, charge comes in two types, positive and negative.

135
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Electric charges are measured in Coulombs, abbreviated C. The electron
has a charge of−1.602×10−19 C (the proton’s charge has the same magnitude,
positive sign). All atoms, molecules, or macroscopic charged objects get their
charge from either an excess or deficit of electrons compared to the number of
protons they have; a charge of 1.602×10−19 C is thus considered fundamental,
as all observed particles or objects have some integer multiple of this value.

9-2-2 The electric force

We can determine the electrical force between two charges in one of two ways:
the direct model or the field model. In the direct model, we determine the
magnitude of the electric force without any reference to the field:

Charge #1
creates
force on
=⇒ Charge #2

From Newton’s third law, we know that charge #2 simultaneously exerts
a force of the same magnitude on charge #1. In the direct model the two
charges are treated the same way.

The magnitude and direction of the electric force from a point source charge
Q on test charge q, with a distance r between their centres, is given as:

Felectric Q on q =


Magnitude =kQq/r2

Direction = attractive if q and Q have the opposite signs
& repulsive if q and Q have the same sign

The constant k = 9× 109 Nm2/C2 converts everything to the proper units of
Newtons. Compare the direct model for electrical forces to the direct model
for gravitational forces. Note that in both cases, the strength of the force
depends on the inverse square of the distance between the objects’ centres.
That is, if we double the distance between two charged objects, both the
gravitational force and the electrical force will be one fourth the previous
values. Also note that mass and charge enter the equation in an identical
fashion.

If you are asked to draw a force diagram for an electrical setup, note that
you determine the direction(s) and the magnitude(s) of all relevant forces in
separate steps. To determine the direction of the electric force, we do not use
equations. Instead, recall from Physics 7A that like signs repel but opposite
signs attract.
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9-2-3 The electric field

Another way to determine the electric force is via the field model. Through-
out this quarter, we will use the field model more frequently than the direct
model. In the field model, we analyse the interaction between two charges in
two steps:

Charge #1 (source charge)
creates
field
=⇒ E

exerts
force on
=⇒ Charge #2 (test charge)

Instead of directly calculating the force the source charge #1 exerts on the
test charge #2, we think of the source charge as creating an electric field
E, and then this field exerting a force on the test charge. Once we have
determined the electric field produced by the source charge, its job is done,
and we can determine the force on test charge entirely from the field E. As
with the gravitational field g, the electric field E exists in all points of space,
and may or may not change over time. In addition to having a value at all
points of space, the field also has a direction. The property of having both
a magnitude and direction at every point makes this field a vector field. We
can represent these properties with either field vectors or field lines (more to
follow).

The first step in the field model is to determine the field created by the
source charge, and this step does not involve the test charge in any capacity.
Likewise, the second step in the field model is to determine the force created
by the field. At this stage, we no longer consider the source charge but
instead consider the field the source charge produced . In the direct model,
we consider the interaction between the two charges directly. In the field
model, we consider each charge in a separate step.

Now that we have defined the ideas of electric fields and forces, let’s explore
the relationship between the two more exactly. We previously determined
that the electric force can be calculated from:

|Felectric Q on q| =
kQq

r2

In defining our electric field, we must ensure that the field does not depend
on the test charge. Consider Q to be the source charge and q to be the test
charge. The simplest construction we could make without the test charge is
kQ/r2, which would be the electric force on a test charge of one Coulomb.
To determine the force on any other test charge, we would take the value
kQ/r2 and multiply by the magnitude of the test charge. This idea should
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sound very familiar, as it is exactly what we did in defining the gravitational
field!

Thus, we find that the electric field is given by:

Eof source charge Q =

{
Magnitude = |kQ/r2|
Direction: in towards −Q; out away from +Q

(9-2.1)

The units of the electric field are Newtons/Coulomb. There are other equiv-
alent units such as Volts/meter that we will see later (§9-2-5-1). The mag-
nitude of the E field is an absolute value–its just a length of a vector. The
electric field’s direction at a point is in the direction a positive charge would
feel a force. A negative charge feels a force in the opposite direction to the
electric field. As a consequence of this convention, the fact that a positive
charge repels other positive (test) charges means that the electric field starts
on a positive charge and points away. A negative charge would attract a pos-
itive (test) charge, and therefore negative charges create electric fields that
point inward. The total electric field is taken by combining the electric fields
of all the source particles and superposing them (see §9-1-5).

To determine the strength of the electric force, multiply by the magnitude
of the test charge:

Ffield on q = qE

The units work out nicely to give Newtons, the expected units of force. If
we combine the two steps of the field model of electric forces, we find:∣∣∣Ffield from Q on q

∣∣∣ = |qEfrom Q| =
∣∣∣∣q(

kQ

r2

)∣∣∣∣ =

∣∣∣∣kQqr2

∣∣∣∣
This is merely the direct model of electric forces. It is a nice result that we
mathematically obtain the same answer for the magnitude of the force on q
using either method (direct or field).

Example #1:
In the direct model of force, we found that the force is attractive when the
charges are different signs and repulsive if the charges are alike. How can we
use the electric field to determine the direction of the force?
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Solution:
We know that positive charges create electric fields that point outwards in
all directions of space. If we place a second positive charge in the field, we
will have a repulsive force that also points away from the source charge:

If instead we place a negative charge in the field, we find an attractive
force that points toward the source charge, in the opposite direction to the
field:

At least in the case of two charges in space, we find that that the force
is in the same direction as the field for positive source charges, and opposite
the field for negative charges.

It turns out that the relationship between force and field direction ex-
plored in example 5 generalises. No matter how complicated the charge
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configuration, if we know the direction of the electric field, we can easily
determine the direction of the electric force.

Fof field on charge q :


Magnitude =q|E|
Direction = along E field vector for + q;

opposite E field vector for− q

Before proceeding, we should pause for a moment. We have provided an
equation to calculate the electric field created by a single charge. If we would
like to find the electric field created by two charges at a certain location in
space, we know we can use the principle of superposition (as in §9-1-5) to add
the various fields at that specific location. Note that we must add the fields
as vectors; simply adding the fields’ magnitudes is not correct (depending on
orientation, adding two fields with equal magnitude can result in a net field
of zero, of double the individual fields, or anything in between). We could
extend this process to calculate the field from three charges, 10 charges, or
10,000 charges. Every unique configuration of charge will have an equation
for the total electric field. If the objects are not spherical or points, the
electric field is not given by equation (9-2.1)

9-2-3-1 Representing the electric field

Throughout §9-1 on fields, we explored three ways to represent fields. In this
section, we will expand on two of these representations for the case of electric
fields: vector map and field line map.

Vector map
In order to make a full vector “map” of the electric field surrounding a source
charge Q, we must evaluate the magnitude and direction of the electric field
vector at each and every point in space. As this is impractical, we settle for
calculating the field at various evenly spaced points on a grid surrounding
the source charge, but even this can be a daunting task! You should begin to
be comfortable with calling this “map” of electric field vectors the “E field.”
Some very long E vectors (i.e., at points very close to the charge Q) have
been omitted for clarity. One advantage of the vector map representation is
that it highlights specific field vectors at specific points in space. Compare
the below maps to those for gravitational fields in section 9-1-3-3.
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+ -

Field lines
A second way we can represent the electric field is through field lines. Field
lines are a graphical “shortcut” to represent electric fields, and are drawn
by connecting field vectors together. Electric field lines always start from a
positive charge and end on a negative charge (or extending indefinitely into
space). The direction of the field vector can be determined from the field line;
the field vector is tangent to the field line (see diagram). (diagram showing
a complicated field line map, showing several sample field vectors)

Example #2:
Explain how you can determine the strength of the electric field using a) the
vector map representation and b) the field lines representation. You may
find the relationships in section 9-1-6-1 useful.

Solution:
a) In the vector map representation, a field vector is provided at many
sample locations throughout a region. Locate the field vector closest to
the point of interest. The length of the vectors indicates magnitude of the
electric field at that location. Note that the actual scale of the vectors is
somewhat arbitrary and chosen for clarity (that is to say, is 1 cm equal to 10
Newtons/Coulomb? Or 1,000 N/C?) The relative length of different arrows
determines the relative strength of the electric field. The actual magnitude
could be determined from the scale.
b) In the field lines representation, the density of the field lines determines
the strength of the electric field. Locate the point of interest, and see how
many field lines are nearby. Consider placing a quarter on the paper at that
point. How many lines does your quarter cover? How does this compare
to how many lines your quarter would cover elsewhere on the page? The
relative density of the field lines determines how strong the field is, though
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it not possible to determine an actual magnitude direction from the field
lines representation.

Example #3:
In Section 9-1, ex. #4 and Section 9-1, ex. #5 from the section about
fields, you developed a vector field map and a field line map for gravitational
field created by two separated spherical balls of equal mass. Now suppose
that each ball carries a net charge, and that furthermore the electric field
they generate can be represented by the exact same maps. Determine the
signs of the charges.

Solution:
Looking at the field line map (reproduced below), it is clear that the field
lines end on the charges. Field lines end on negative charges, so each charged
ball must carry a negative charge.

9-2-4 Electric potential energy

Believe it or not, you already know a great deal about electric potential
energy, which you studied extensively in Physics 7A. For instance, it takes
energy to move two like charges closer together. We can model the process of
moving charges closer together with the following energy interaction diagram:

W = ∆PEelectric

Now let’s imagine starting with a positive charge and a negative charge
very far apart, and allowing them to come nearer. The charges are attracted
to one another. As they come nearer, they speed up due to this attraction.
We can represent this interaction with the following energy system diagram.
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PEElectric work

Figure 9-2.1: It takes work to more two like charges closer

PEElectric KE

v

Figure 9-2.2: As unlike charges near, PEelectric is transferred into KE.

∆Etot = 0 = ∆PEelectric + ∆KE

Like force, potential energy is an interaction and requires at least two charges.
It makes no more sense to talk about the potential energy of a 45 Coulomb
ball than it does to talk about the force of a 45 Coulomb ball. To have either
a force or potential energy, a minimum of two charges are required.

As both force and potential energy are interactions and require at least
two charges, one might expect them to be related in some way. Indeed, they
are. Their relationship was studied in Physics 7A: how quickly the potential
energy changes as position changes determines the magnitude of the force.

|Fsomething on object| =
∣∣∣∣d PE

dr

∣∣∣∣
Recall that graphically, evaluating the derivative at a certain location is
equivalent to finding the slope of a PE vs r graph at that location. If the
potential energy is changing rapidly, then the graph will be steep, the slope
big, and the force at that spot great. If these ideas are unfamiliar to you,
consult appendix D of this volume or your introductory calculus text.
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Example #4:
As studied in Physics 7A, the attraction between two atoms can be modelled
as a Lennard-Jones interaction. Determine the force at a separation distance
of a) 1.5 Angstroms and b) 4 Angstroms.

r [Å]

PE [ eV ]

1.0

2.0

0

-2.0

-1.0

-3.0

-4.0

5.01.0 2.0 3.0 4.0

Pairwise Potential

Solution:
We are asked to evaluate the force at two different locations. To do this, we
must draw a tangent line at each location (1.5 Å and 4 Å) and calculate
each line’s slope. This will determine the magnitude of the force. We must
also determine the direction of the force.
a)
A tangent line must have the same slope as the original function. Taking a
ruler and matching the slope, we find

r [Å]

PE [ eV ]

1.0

2.0

0

-2.0

-1.0

-3.0

-4.0

5.01.0 2.0 3.0 4.0

Pairwise Potential

The task now before us is to calculate the slope of this line. Between the
0.75Å and 3Å locations, the potential energy changes by 6 eV. The slope is
rise over run, or

slope ≈ 6 eV

(3Å− 0.75Å)
= 2.67 eV/Å.
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While we have certainly determined the magnitude of the force, the units of
force we are accustomed to are Newtons, not eV/A. Before we call our work
complete, we should convert to Newtons.

1 eV = 1.6× 10−19Joules, and 1 Å = 10−10 meters(
2.67

eV

Å

) (
1.60× 10−19 J

eV

) (
1 Å

10−10 m

)
= 4.3× 10−9 J/m = 4.3× 10−9 N.

As far as direction goes, at the 1.5 Å mark, the atoms are attracted. The
force is to the left. The force will always act to decrease the potential energy.
b)
At a separation of 4 Å, the potential energy graph is nearly flat. Thus, the
slope approaches zero, and so does the force.

There is no single equation for potential energy. For instance, the po-
tential energy of two atoms interacting (as in the Lennard-Jones interaction,
above) is different than the equation for two single charges interacting. We
have discussed the electric field created by a single charge, and the electric
force between two charges. We now use this prior work, along with the re-
lationship between force and potential energy, to determine the potential
energy of two charges interacting.

The magnitude of the force between two spherical charges is |kqQ/r2|.
We know that the force is equal to the derivative of the potential energy
with respect to position; |FQ on q| = |d PE/dr|. We would like to know
the potential energy as a function of position. Our question becomes, “what
function has a derivative of −kqQ/r2?” An integral later, we find that the
potential energy of charges interacting is given by:

PE =
kqQ

r
+ constant

Our only prior requirement was that the derivative (or slope) of the potential
energy with respect to position gives us force. The constant does not change
the derivative (slope). It is up to us to determine the value of the constant,
and in so doing, the zero-point for potential energy. This idea should be
familiar from Physics 7A. It is convenient to choose charges separated by
a long distance to have zero potential energy. With our current equation
for potential energy, PE =kqQ/r+ constant, when we consider very large
separation distances, we have PE= constant. To make this correspond to
having no potential energy, the constant must be equal to zero.
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With two signs, there are three different combinations of charges: both
positive, both negative, one charge of each sign. As far as the potential
energy is concerned, either case of like charges results in a the same potential
energy for all separation distances, so only two cases need be treated: like
charges or different charges, as in figure 9-2.3.

Separation 
distance

Potential
energy

(a) Like Charges

Separation 
distance

Potential
energy

(b) Unlike Charges

Figure 9-2.3: Potential energy graphs for spherical charges. a) Like charges
have positive potential energy. b) Unlike charges have negative potential
energy.

For like charges, the potential energy is always positive. Considering the
total mechanical energy, (PE + KE), and knowing that kinetic energy is
always positive in classical systems, the total mechanical energy must be
positive as well. If the charges are initially moving toward one another,
energy transfers from KE to PE until finally all of the energy is in PE, at
which time the particles briefly stop, turn around, and move apart.

For unlike charges, there are two interesting cases. If the total mechanical
energy is greater than 0, then the particles will have both kinetic energy and
potential energy for all separation distances. If the total mechanical energy
is less than 0, then the particles are confined to one another in a bound state.
At these energies, the particles lack sufficient energy to escape their electric
attraction. A common example of this phenomenon is the hydrogen atom,
which will be analysed in more depth in the final chapter.

Test yourself:
Note for either potential energy graph, the PE gets flat for large separation
distances and steep for small separation distances. What can you conclude
from this information?
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At this point, we have explored the ideas of charge, force, electric field, and
electric potential energy. The last concept to tackle is the electric potential,
corresponding to the gravitational potential U in section 9-1-4-1.

9-2-5 Electric potential

Electric potential is different from electric potential energy!

Although force depends on having at least two charges, we found it useful
to define a field E so that we could easily determine the force on any given
point charge. Like force, potential energy depends on at least two charges.
We can define a new quantity, electric potential, to tell us something about
energy that can be determined by source charge(s) alone.

The electric potential tells us how much potential energy a point particle
would have at a certain location. Specifically, the electric potential tells us
how much potential energy a one Coulomb charge would have. Like energy,
the electric potential is a scalar, having magnitude but no direction. Because
the electric potential is defined at all points in space, it meets the qualifi-
cations of a field, and we can describe the electric potential with a scalar
field.

We will define the electric potential in an analogous way to how we defined
grativational potential in 9-1-4-1.

PEelectric = q1V2

In this notation, V2 is the electric potential created by charge two.

Knowing that electric potential energy is measured in Joules, and charge
in units of Coulombs, it follows that electric potential V must have units of
Joules/Coulomb. Electric potential is thus an energy density. We already
have a quantity labelled V with units of J/C from Physics 7B: Voltage (recall
that volts = J/C). As it turns out, voltage and electric potential are the same
thing, and the terms will be used interchangeably from here out.

Test yourself:
In section 9-2-4 we discussed the electrical potential energy for interacting
charges. In this section, we developed a relationship between PEelectric and
the electric potential for a point charge. Determine the equation for the
electric potential from a point charge.
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+
I

Figure 9-2.4: A simple circuit consisting of a battery and string of resistors.

Our prior experiences with electric potential were primarily in circuits. In
a circuit, an electron gains a certain amount of energy in travelling across a
battery from low voltage to high voltage. To draw an analogy with gravita-
tional interactions, the process is similar to being lifted vertically and gaining
gravitational potential energy as it travels from low to high gravitational po-
tential.

In an electrical circuit, the voltage drops by IR across every resistor. Imag-
ine we have a string of resistors hooked up to a battery as in Figure 9-2.4.
In this case, the battery, wires, and resistor string together constitute the
“source charge configuration.” Before we mention a specific electron, we can
discuss the electric potential at various locations in the circuit. However,
we cannot talk about changes in electric potential energy until we introduce
a specific electron, a test charge, and its path through the circuit. Electric
fields and electric potentials depend only on the source; electric potential
energy and force depend on the source and test charge.

Equipotential representation of V

We will continue with the example of a string of resistors hooked up to a
battery. If all of the resistors have the same resistance R, then the voltage
drop across each sequential resistor would be equal. To represent the electric
potential, or voltage, we typically draw “equipotential maps” by connecting
locations with the same potential. Furthermore, we typically indicate only
equally spaced potentials (for instance, we could choose 3V, 2V, 1V, 0V, -1V,
but we would not choose 3V, 2.5V, 1V, -3V). Figure 9-2.5 indicates places
on the string of resistors with the same potential. Because all resistors have
the same value, the voltage drop across each one is equal and we have met
the requirements of having equipotentials spaced at regular intervals.
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Figure 9-2.5: A simple circuit consisting of a battery and string of resistors.

For the circuit diagram 9-2.5, the equipotential representation adds little
or no value to our prior circuit diagram representation indicating ∆Va to b,
for instance. In circuits, we are only interested in what occurs along one
dimension, the dimension of the wire. The real value of equipotentials occurs
when applied to more dimensions, because then we can see the value at all
points in space. By knowing the value of the electric potential, we know how
much potential energy a charge would have it it were placed at that value.
As we will see in a moment, information gleaned from the equipotential map
also indicates the relative strength of the magnetic field, which can be used
to determine the relative magnitude (and direction!) of the force on a point
charge at a specific location.

As with the electric field, any configuration of charges has a unique electric
potential. That is to say, the potential from a spherical charge, a capacitor,
and a charged wire all have unique potentials and fields. You will have the
opportunity to explore several of these during DL.

Example #5:
a) Draw three or four equipotentials for a proton, spanning the range be-
tween 10V and 30V. Be sure to include an appropriate scale on your
equipotential map.
b) Using your equipotential map, estimate the value of the potential at the
Bohr radius, 0.529 Å, which corresponds to the electron’s average separation
distance from the proton in the lowest energy state in the Hydrogen atom.

Solution:
a) The electric potential from a point charge Q is kQ

r
. We are asked to span

the range of voltages between 10V and 30V with three or four potentials.
We know that our equipotentials should be chosen with equal voltage
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differences. 10V, 20V, and 30V are our best bet.
Before blindly plugging numbers into the formula, let’s think about what
we expect to draw.

– The potential is proportional to 1
r
, so as we move further away from the

proton, the potential will decrease. Applying this idea to our problem,
we expect the 30V equipotential to be closest to the proton and the
10V furthest away.

– Furthermore, the potential decrease faster for smaller distances, such
as from 1m to 2m, than it does for larger distances, such as from 99m
to 100m (not convinced? Think of the graph of the function 1/r or
plug the numbers into your calculator). Because of this, we expect the
20V equipotential to be closer to the the 30V potential than the 10V
potential.

Now that we’ve thought through our expectations, we can look up the values
of k (9×109 Nm2

C2 ) and the charge of a proton (1.6×10−19 C) in the appendix.
We calculate the value of r for each of the three voltages, starting with 10V:

10 V =

(
9× 109 Nm2

C2

)
(1.6× 10−19 C)

r10V

r10V = 1.44× 10−10 m

1.44 m = 1.44× 10−10 m×
(

1 Å

10−10 m

)
r10V = 1.44 Å

Similarly for the other voltages,

r20V = 0.72 Å

r30V = 0.48 Å

Next, we plot the values, being sure to indicate the scale. See Figure 9-2.6.
Comparing our graph to our expectations, we find they match, so we can
proceed to the second part of the problem.
b) Using our scale, we determine where the Bohr radius fits into the picture.
The location is marked with a solid dot. Apparently, the value of the potential
is between 20V and 30V, but much closer to 30V. We might estimate a value
of 28V.
Though it is not asked for in the problem, we can calculate the value of the
Bohr potential at that location. Plugging numbers into the formula, we find
just over 27V. Our prediction wasn’t bad!
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10V
20V

1A

Figure 9-2.6: Three equipotentials created by a proton. The Bohr radius is
marked with a solid dot

9-2-5-1 Relationship between E and V

Thus far we have focused our attention on the relationship between the po-
tential energy and the electric potential V . We noted earlier that both E and
V depend entirely on the source charges. We now explore the relationship
between these quantities.

Let’s think about two interacting spherical charges one last time. We can
find the electric potential created by charge Q (kQ

r
). Go from the electric

potential created by Q to the electric potential energy of charge q, simply
multiply by q, as in this section (kqQ

r
). Using this, we take the derivative with

respect to separation distance to find the force between the charges, as in
section 9-2-4. (kqQ

r2 ). From the force of charge Q on charge q, it is simple to
recover the electric field created by charge Q; simply divide by the magnitude
of charge q (kQ

r2 ). In a roundabout way, we have found a relationship between
electric potential and electric field, using the relationships developed in earlier
sections: take V , multiply by q, take the spatial derivative, divide by q. You
may have noticed that this is overly complicated. Instead, we can simply take
the derivative of the electric potential with respect to separation distance.

What does this mean? Refer to Appendix D or your favourite introductory
calculus book if you need a refresher on calculus. The electric field is big
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when the derivative of the electric potential is large, which occurs in regions
where the electric field is changing rapidly. On a graph of electric potential
as a function of separation distance, a large electric field corresponds to a
steep slope. In the equipotential map representation, a large electric field
corresponds to potentials that are close together (in those locations, the
potential changes rapidly over short distances).

Four box diagram

In section 9-1-6 we first introduced all of the relationships between F , E,
V , and PE in a diagram. This diagram is reprinted below. Study the re-
lationships again, after reading more about electrical phenomena and again
after completing DL activities on the subject matter. Memorising this dia-
gram will not enable you to understand the physics in this section, nor to
ace your quizzes. Instead, look at the diagram as an organising structure.
Ask yourself the following types of questions.

– What is common between the quantities on the bottom (PE and V )?

– What about the items on the left side (Ffield on q and PE)?

– How do you get from a quantity on the left to a quantity on the right?

– In what ways can we represent each of the quantities (what types of
diagrams or graphs?)

– In a diagram of one item (such as a graph of electric potential as a
function of separation distance), how can we gain information about
other quantities (such as PE or E)?

Electric field/force/potential relationships

Potential exists for time-independent electric fields only
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Force F Field E

PE Potential V

F = qE

E = F /q

PE = qV

V = PE/q
-

�

-

�

6

?

6

?

mag. F = mag. slope on

PE vs r graph

mag. E = mag. slope on

V vs r graph

9-2-6 An in-depth example: the electric dipole

To make concrete all the ideas of electric phenomenon, we now work through
the problem of an electric dipole. Note that this is one specific example of
many available. It is more important to know the main ideas of this unit and
how the ideas relate to one another (i.e. what is an electric field and how
does it relate to electric potential?), than it is to know the specifics of the
material presented in this section. The electric dipole was chosen because of
its importance to magnetism.

The electric dipole consists of two charges of opposite signs separated by
a small distance. Though this setup sounds fairly contrived, many molecules
(water among them) act like dipoles, because within the molecule the charges
separate leaving a net positive side and a net negative side. Much of the
biology and chemistry you have studied has depended on dipole interactions.
Note that there is no gravitational equivalent to a dipole, since there is no
“negative” mass.

Let’s start off simply. Imagine two charges, each of the same magnitude
but opposite sign. In previous sections, we discussed the interaction between
these charges; now we will discuss interactions between this charge pair and
other charges. We are then interested in the field and potential created by
both charges, not simply the field created by one charge at the location of
the other charge.

We will start by considering the electric field. Field lines must begin on a
positive charge and end on a negative charge (or continue forever into space).
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+Q -Q

(a) From single charges

+Q -Q

(b) Dipole field lines

Figure 9-2.7: Constructing field lines for an electric dipole. a) Fields lines
from each independent charge. b) Field lines from entire dipole.

+Q -Q

A
A

Figure 9-2.8: Sample field vectors at point A. Notice that the field vector is
tangent to the field line, as expected.

The density of field lines represents the strength of the field. In this case,
the charges have equal magnitude, so the density near each charge is the
same. First consider the field lines from each charge in isolation, as shown
in Figure 9-2.7a). Next we need to connect the lines in a sensible fashion.
This is shown in Figure 9-2.7b).

We can check our work by calculating a few sample electric field vectors.
Suppose the charges are oriented horizontally and separated by a distance L.
Consider a point equidistant from both charges, such as the point labelled
‘A’ in figure 9-2.8.
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We first draw the individual field vectors from the positive charge and the
negative charge. For the positive charge, the vector points away from the
charge. For the negative charge, the vector points toward the charge, at the
same angle from horizontal. Point A is equidistant from each charge, so the
magnitudes of the vectors are identical.

Using head-to-tail vector addition, add the vectors. The up and down
components of the vectors cancel, leaving the sum pointing directly to the
right. The sum, shown with a double arrow, points in the direction of the
electric field at this point. Superimposing the field vector on top of the field
lines, we see that the electric field vector is tangent to the electric field line
at point A. This is reassuring, as field vectors are supposed to be tangent to
field lines at every point.

Test yourself:
Check that the field vector is tangent to the field line at another point.

Next, we consider the electric potential. We wish to consider points very
far from the dipole to have an electric potential of zero. Nearing the negative
charge, the potential will get increasingly negative, and nearing the positive
charge, the potential will get increasingly positive.

To directly calculate the potential at a given point, we will use the equa-
tion:

V =
kQ

r

but we need to consider the contributions from each charge. At a point
equidistant between the charges, the distance r is the same for both contri-
butions, though the signs differ.

V =
kQ

r
+
k(−Q)

r
= 0

Any point equidistant to each charge has a potential of 0.

We will now draw the equipotentials using the information determined
above and what we know about equipotentials from earlier sections:

– The potential far from the charges is 0.

– The potential equidistant from the charges is 0.

– The potential near either charge is increasingly positive (or negative).
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+Q -Q

Figure 9-2.9: Field lines and equipotentials from an electric dipole.

– Equipotentials are perpendicular to field lines.

– In places where the field is strong, the potentials are close together.

Test yourself:
In §9-1-6-1, we summarised the field map, field lines, and equipotential rep-
resentations in tabular form. Using the table, and the image above 9-2.9,
make certain you understand each representation.

You may wonder why so much of 9-2 has been dedicated to the electric
dipole. There are several reasons for this attention. For one, it has given us
a chance to put together electric fields and potentials in a more complicated
example. Additionally, dipoles are ubiquitous in chemistry, as you may recall
from dipole-dipole bonding, for instance. Finally, as you will see in 9-3, the
dipole field is of critical importance to magnetism.

9-2-7 Summary

1. Electric interactions involve electric charge, measured in units of Coulombs.

2. The electric field is a vector field. It contains all of the information
required to determine the force on an object placed in the electric field,



9-2-7. SUMMARY 157

using
F = qE.

Units of the electric field are J/C, or equivalently N/m.

3. By convention, electric fields point away from positive charges and
toward negative charges. Field lines may only start or end on charges;
if they do not end they either loop around on themselves or extend
toward infinity.

4. The electric potential, V , is a scalar field, having units of Volts. How
quickly the electric potential changes along a distance ∆x indicates the
strength of the electric field in that direction.

E =
∆V

∆x
.

5. Both the electric field and the electric potential can be determined
entirely from the source charges. The principle of superposition allows
us to add the effects of multiple charges to find a single, total E and
V .

6. An electrical force is an interaction between two (or more) charges. For
two point charges this charge can be calculated directly

|Fpoint q1 on point q2
| = kqQ

r2
,

or determined from the field created by the source charges, or found by
seeing how the potential energy changes with distance

|F| = ∆PE

∆x

7. The concepts in this chapter have several common representations:

– A vector map: This representation for the electric field shows
individual field vectors at representative points.

– A field line map: This representation for the electric field uses
continuous lines. The actual field is tangent to the field lines at
any point. The strength is determined by how close together the
field lines are.

– Equipotentials: This representation for the electric potential indi-
cates spots with equivalent potential. Where the potential changes
quickly, the electric field is large.
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9-2-8 Exercises

Questions 1-3:
In the following figures, the hollow circles represent the location of sources
charges. The small black dots indicate the location of the test charge. In each
problem, you are asked to reach some goal (like E = 0). If the goal is not
possible, explain why it is impossible. If the goal is possible, or determine
the source configuration required to meet the goal. A single plus sign +
indicates one unit of positive charge, and a single − sign indicates one unit
of negative charge. You are asked to place as many + or − as necessary at
the source charges to satisfy the requirements of the problem.

1. Goal: Electric field at the test charge location 0. In each case, add
many + or − as necessary, or explain why the goal is not possible.

a) b)

c) d)

2. Goal: In each of the preceding examples, add as many + or − charges
to the balls to make the net field point upward at the test location.

3. Goal: Electric field at the test charge location is 0.

a)

8

3

2.5

b)
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c) d)

3

4

√84

Questions 4-8 Human nerve cells (neurons) transmit messages by send-
ing electrical impulses. The cell membrane contains channels that allow
various ions, like Na+, K+, and Cl− to selectively move in or out of the
cell, thereby changing the charge distribution and the electrical poten-
tial. The voltage inside the cell differs from the voltage outside the cell
across the length of the cell membrane. In this problem, we will model
the electric field as uniform, meaning that the magnitude and direction
of the electric field is the same throughout the membrane.

4. Before the cell fires, the ion distribution is such that the outside of the
cell has a higher potential than the inside of the cell. This changes when
the cell fires: at the peak of the nerve impulse, the cell membrane allows
a rapid influx of Na+ ions, giving the inside of the cell a net positive
charge compared to the outside.

The image shown below is a crude cross-section of the length of the
cell, showing (from top to bottom) the outside of the cell, the top cell
membrane, the inside of the cell, the bottom cell membrane, and again
the outside of the cell.

(a) Use a field line map to represent the electric field within the top
membrane. Recall the the field is uniform. You may find it helpful
to draw the charge distribution within and without the cell.
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Inside the Cell

Outside the Cell

Use top cell 
membrane for (a)

Use bottom cell 
membrane for (b)

(b) Use a vector map to represent the electric field within the bottom
membrane.

5. During the nerve impulse the voltage difference between the inside and
outside of the cell is approximately 40 mV. If the cell membrane is
8 × 10−9 m thick, the cell diameter is 2 × 10−6 m, and cell length is
10cm, determine the strength of the electric field you drew in question
4.

6. Next, represent the voltage in two ways.

(a) Draw equipotentials within the membrane in the figure shown
below. Space them 20mV apart.

Inside the Cell

Outside the Cell

Draw equi-
potentials here

(b) Graph the voltage as a function of position. Explain any assump-
tions you make in a complete sentence. Place y=0 at the inside
border of the cell and membrane, and let y be positive as you
move toward the outside of the graph. Be sure to label both axes
with numerical values.
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7. Explain how your answers to both a) and b) of question 6 reflect the
electric field being uniform.

8. As mentioned above, the impulse occurs because sodium ions flow into
the cell. Think about the very last sodium ion to flow into the cell.
How does this cell’s potential energy change as it passes into the cell
(magnitude and sign)? Which direction is the force on the cell? (If
you’re curious about how the sodium ion manages to flow into the cell,
that’s good! Cellular regulation of this process is a balance of potassium
leak channels, sodium-potassium pumps, open cells allowing diffusion,
and voltage-gated sodium channels. A course including neurobiology,
like NPB 101, will help you sort it out!)
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Unit 9:

9-3: Magnetic fields

9-3-1 Magnetism and the B field

9-3-1-1 Magnets, north and south poles.

When we are given a set of magnets, we usually begin exploring their behavior
by playing a bit with them. One of the first things we find is that we can
get a pair of magnets to stick when some ends face each other, but turning
one of the magnets around it is hard to get them to stick. We find that bar
magnets can attract or repel other magnets depending on which ends are
brought together. We need a way to label the two ends. The convention is
that these two distinct ends of a magnet are called the north pole and the
south pole. This convention is related to the use of magnets in navigation.
The development of the navigational compass (around the 12th century)
makes use of the interaction between bar magnets and the Earth, which for
the purposes of magnetism is one large bar magnet. We can then use the
Earth as our bar magnet of reference and use it to define the pole of all
magnets. The poles are defined thus: If we suspend any magnet freely on a
table (by a string or sticking it to a cork which is free to float on a liquid, to
name some examples) the end of the magnet that points towards the north
geographic pole of the Earth is referred to as the “north-seeking pole” or
just the north pole. The opposite end is the “south-seeking pole” or just the
south pole.

With this definition, we can go back and explore the behavior of magnets in
a similar fashion as one can explore the behavior of electricity once the charge-
sign convention has been established. If we bring together two magnets and
want to make their north poles touch, we notice that there is a repulsion
between the two magnets. If we flip one of the magnets so that now we make
a south pole approach a north pole, we notice that the magnets will attract,
even stick together. Therefore, we can conclude from these observation that

163
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NS N S

F-F
(a) Magnetic Repulsion

NSNS

F -F
(b) Magnetic Attraction

Figure 9-3.1: The attraction and repulsion of magnets. a) Similar poles repel
each other (North-North in this case). b) Opposite poles attract.

like poles repel and opposite poles attract. This behavior is illustrated in
figure 9-3.1, and is something you should also verify in your D/L. In figure 9-
3.1 (a), we suspend two bar magnets from a pair of strings, such that the
North poles of both magnets are in close proximity. The two bar magnets
will exert a repulsive force on each other, represented by the arrows in the
Figure. The repulsive force that each bar magnet exerts on the other will
be equal in magnitude and opposite in direction (Newton’s Third Law). In
Figure 9-3.1 (b), we do the same thing but flip one of the magnets. Now, the
North pole on the left magnet is close to the South pole on the right magnet,
so the two bar magnets experience an attractive force.

One interesting aspect of magnets, a feature that is distinct from electric
phenomena, is that magnets always have two poles. Imagine that you have
a long bar magnet with the north pole on the right and the south pole on
the left end. Let’s say you want to break it into two pieces. One might think
that you end up with only a north pole in the right piece and only a south
pole in the left piece. It turns out that upon breaking it, there will be two
new poles appearing right at broken ends, so each new piece will still have a
north and a south pole, as in Figure 9-3.2.

NS

NS NS

Figure 9-3.2: Absence of magnetic monopoles. Upon breaking a bar magnet,
we end up with two magnets that still have both North and South poles.



9-3-1. MAGNETISM AND THE B FIELD 165

This behavior has no analog in electricity, where one can separate positive
and negative charges, and each charge can exist in an object separately. In
nature, as far as we know, there are no north poles without a south pole, nor
south poles without a north pole. This is referred to as the absence of mag-
netic “monopoles”, and is one of the most important findings in magnetism.

9-3-1-2 The B field.

Once we have defined a convention for the two types of magnetic poles, we are
ready to define the magnetic vector field B. Imagine placing several round
magnetic compasses on a plain sheet of paper on a flat table. In the absence
of any other magnets, the compasses will all align themselves in the same
direction: their north poles will be pointing towards geographic North by our
definition. So we rotate the compasses such that the label “N” points to the
top of the page. Assume that we now place a large bar magnet horizontally on
the sheet of paper as shown in Figure 9-3.3, with the North pole on the right
of the page. What happens? The magnetic needles of the compass, which
are very light and can move freely (the equivalent of our test charges for the
electric field) will reorient themselves in the presence of the bar magnet. The
compass body, which is usually not magnetic, feels nothing and so remains
with the “N” labels pointing to the top. The compass needles now do not
point to the top; they will be pointing in different directions, as shown in the
figure. The bar magnet produces a magnetic field in its surrounding space,
and the magnetic needles of the compass reorient themselves because the field
exerts a force on them. For example, the compass needle that is just right of
the bar magnet is closest to the North pole of the bar magnet. Therefore the
North pole of the compass needle will be repelled by the North pole of the
bar magnet, so it will now point to the right. Examining the other compass
needles, we can use this situation to define the direction of the magnetic field
vector B: at a given location in space, B will point in the same direction
that a north-seeking magnetic compass would.

Another way to say this is to use similar language to the E field definition.
Recall that we defined the direction of the E field as the direction of the force
that a positive charge would feel at a given location in space. Similarly, the
B field direction is defined as the direction of the force that a north-seeking
pole would feel at a given location in space. So if we place a compass near the
north pole of the bar magnet, the north pole of the compass will be repelled
by the north pole of the bar magnet (and the south pole will be attracted
to it) causing our compass to point as shown in Figure 9-3.3. Imagine now
placing compasses one after the other, such that their compass needles are
touching head to tail. If you follow this procedure starting near the north
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N

N

N

NS
N

N

Figure 9-3.3: Magnetic field direction. Note that the B field points away
from North poles and toward South poles.

pole of the bar magnet, you will find that you will end up eventually at
the south pole, as shown by the progression of arrows in the figure. This
schematic illustrates the idea that we can follow a line from North to South
pole of the magnet. Just as we did with the E field, we can represent the
magnetic field of a magnet by drawing the magnetic field lines, which will
follow the path of the head-to-tail compasses in our example. Note that in
the figure, there is one north pole and one south pole present, so we have two
opposite type poles. This configuration is very similar to the electric dipole,
where we had one positive and one negative charge present. You will notice
that these two field configurations have a similar shape for the field lines.

9-3-2 Magnetic forces

9-3-2-1 Magnetic force on a moving charge

Until now we have talked about our everyday experience of magnetic fields
originating from what are called “permanent magnets”. But magnetic fields
and electric charges are intimately linked, as we will soon see in greater detail.
For now we will switch gears and consider how a charged particle behaves in
a magnetic field, and in particular what force it feels. We do not really care
how the magnetic field got there just yet, and for simplicity’s sake we will
imagine that the field was created by a magnet. This ignores the interesting
question of what makes a magnet, a question we will return to in section
9-3-3. That is, we are going to start with the field model of magnetic fields:

Unknown
creates
field
=⇒ B

exerts
force on
=⇒ Charge q
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B

v

+q

θ

|FB on q| = |q||v||B|| sin θ|

B

v

+q

B

v

+q

v⊥

|FB on q| = |q||v⊥||B|

Calculate with
angle

Calculate with perpendicular
component of v

Figure 9-3.4: Showing two equivalent ways of calculating the magnitude of
the magnetic force on a test charge

Magnetic forces are of course vectors with both magnitude and direction. We
will begin by analyzing their magnitude, and leave the issue of direction to
section 9-3-2-2.

Experiments demonstrate that the magnetic force exerted on a charged
particle depends on its velocity. If a particle is not moving, it feels no force
from the magnetic field! The magnitude of the magnetic field on a charge q
travelling with velocity v is given by∣∣∣FB on q

∣∣∣ = |q||v||B|| sin θ|

where θ is the angle between the velocity v and the magnetic field B.

Notice that if the velocity v and magnetic field B point in either the same
or opposite directions then the force from the magnetic field is zero. In fact,
to calculate the magnetic force all we need to know is the component of
velocity perpendicular to the B field. This is what the sin θ in the above
formula does. Another way of rewriting the force from the magnetic field is∣∣∣FB on q

∣∣∣ = |q||v⊥||B|.

This is very similar to calculations of the magnitude of torque from 7B, in
which only the component of force perpendicular to the lever arm mattered.
Both approaches for calculating magnetic force are illustrated in figure 9-3.4

9-3-2-2 Right hand rule

When we looked at gravitational fields, we learned that the gravitational
force was always in the same direction as the field. When looking at the
electric field, we learned that the force was in the same direction as the field
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(for a positive charge) and in the opposite direction to the field (for a negative
charge). The magnetic field is quite different – the force on a charged particle
never points in the direction of the magnetic field.

We noted that the velocity v of the charged particle determined the mag-
nitude of the magnetic force. It is also needed to determine the direction
of the magnetic force. Experimentally we find that the magnetic force on a
test charge is at 90◦ to the magnetic field B, and 90◦ to the velocity of the
test charge v. If the magnetic field B and velocity v are not pointing in the
same direction, then there are only two possible directions that are at 90◦

to both of these directions. One of these directions is the direction of the
magnetic force on a positively charged particle; the other is the direction of
the force on a negatively charged particle. To correctly pick the direction for

+q

M
ag

n
etic Field

 D
irectio

n

Velocity Direction

Force

(a) Force on Positive q.

-q

M
ag

n
etic Field

 D
irectio

n

Velocity Direction

Force

(b) Force on Negative q.

Figure 9-3.5: A charge moving with velocity v in the presence of a B field
will experience a force F perpendicular to both v and B. The sign of the
charge will determine the direction of F .

the positive particle, we use right hand rule #2 (RHR #2). We point our
right thumb in the direction the particle is going (v), our right index finger
in the direction that the B field is going, and then our middle finger on
our right hand when bent will point in the direction of the magnetic force1.
The mnemonic “very bad finger” may help you remember the order. The
diagram below may help:

1If you are double jointed, just pretend that you are not for the purposes of using the
right-hand rules.
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v⊥

B F v

B

F

To find the direction of magnetic force on a negatively charged particle, find
the direction of the magnetic force on a positively charged particle and reverse
it.

All of the above was done under the assumption that the magnetic field
B and the velocity v were in different directions. How do we determine
the direction if we decide to fire a charge in exactly the same direction as
the magnetic field? The answer is it does not matter – if the velocity and
magnetic field are in exactly the same direction then the magnitude of the
magnetic force is zero! As we saw before, if the B field and the velocity v are
parallel (or anti-parallel), the angle θ between them is zero; therefore sin θ is
also zero, and the force will be zero.

With both the direction and the magnitude determined, we can now sum-
marize the magnetic force on a test charge q traveling with speed v:

FB on q =


Magnitude =|q||v||B|| sin θ| = |q||v⊥||B|
Direction = middle finger in RHR#2 if q is positive

opposite middle finger in RHR#2 if q is negative

9-3-2-3 Magnetic force on a current-carrying wire

Regardless of whether a charge is in a vacuum or inside a material, it will
experience a force when it moves across magnetic field lines. Therefore, a
wire with a current will experience a force that is the vector sum of all the
forces acting on the charge carriers that are individually moving in the wire
creating the current.

Consider a straight wire segment of length L with a current I flowing
from left to right, placed on the page. Imagine that there is a B field in
this region that makes an angle θ with respect to the wire. If the charges
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on the wire are moving at an average speed v, the time they need to travel
the length L is ∆t = L/v. The amount of charge that flows in this time is
q = I∆t = IL/v. Therefore the force exerted on the wire is

F = qvB sin θ = (
IL

v
)vB sin θ = ILB sin θ

The direction of the magnetic force on a wire is also given by the same
right-hand rule used for single charges. Of course, we now know that it is
electrons which are actually moving in the wire, not positive charges as is the
convention for the current I, but the electrons are moving in the opposite
direction as the conventional current I, so in both cases, the direction of
the force obtained by applying the right-hand rule is exactly the same, as it
should be.

9-3-3 Magnetism and currents

9-3-3-1 What creates magnetic fields?

In the last section we learned that a magnetic field affects moving charges.
By Newton’s third law, the moving charges must exert an equal and opposite
force on whatever produced the B field. That is, the moving charge must
create its own B field! By using Newton’s third law we can complete the
description of the indirect model we started above:

Moving charges
creates
field
=⇒ B

exerts
force on
=⇒ Moving charge q.

As we learned in Physics 7B we can think of moving charges as a current; a
concept that is particular useful if we have a steady flow of charge. So the
indirect model becomes:

Current
creates
field
=⇒ B

exerts
force on
=⇒ Moving charge q.

While we have worked this out, it is far from clear what currents and moving
charges have to do with anything related to the fridge magnets or bar magnets
that make magnetism familiar to us. In essence we have cheated: the ideas
of how a magnetic field affects moving charges were not known until the
mid-1800s. Before that, the only things known about magnetism were some
materials can produce magnetic fields and these attract (or repel) certain
ends of other similar materials, and that the Earth had its own magnetic
field which aligns these magnetic materials. These facts were known to the
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Greeks as early as 600 BC. The question of why certain materials where
magnetic while others did not appear to be, and what phenomenon created
these magnetic fields was not addressed until 1820.

In 1820, Dutch physicist Hans Christian Ørsted had set up an experi-
ment to show that large electric currents could be used to heat a wire. While
demonstrating this to a group of students in his house, he noticed that a com-
pass on his bookshelf changed direction whenever his “kettle” was switched
on. After months of investigation, Ørsted concluded that an electric current
could create a magnetic field. This was big news at the time, because prior
to this only magnetic fields were known to affect other magnetic materials.
This was a watershed moment in the history of science, as it was the first link
between electric and magnetic phenomena. Originally we experience these
as two distinct forces, two distinct fields. Ørsted’s finding was the first step
on the road that led humankind to find that these apparently dissimilar phe-
nomena were in fact linked. This unification of seemingly disconnected ideas
is still at the core of fundamental research: much hope is placed on possibly
unifying all forces in nature.

The finding that electricity and magnetism are linked caused a huge revo-
lution in science, but we now want to return to our question of what makes a
magnet a magnet. Ørsted showed us that electric currents created a magnetic
field, but where are the currents in a magnetised piece of Iron? People could
not answer this question until the late 1800s, and even then they were met
with skepticism. The answer relied on the existence of atoms: in a nutshell,
the origins of magnetism are found in the electric currents produced by the
electrons orbiting (i.e. making a current loop) atomic nuclei, as well as their
spin orientations. Spin is a purely quantum mechanical phenomenon, but for
the purposes of thinking about magnetism in our current discussion, consider
spin is an additional way to produce a “current loop” (albeit a loop with the
smallest size you can think of!) by endowing the electrons with an intrinsic
angular momentum. This “intrinsic spin” can only have two possible values.
From chemistry you would have heard that the electron is “spin up” or “spin
down”. These also play a role in magnetism. The fact that atoms exist is
something we now take for granted, but which most scientists thought of as
ludicrous until 1905 (due in large part to a separate contribution by Ein-
stein)! After all, they reasoned, every other thing they knew in the world
lost energy due to friction, and the idea of atoms with electrons that just
kept going around perpetually was absurd.
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To summarize, all our experiments point to the following finding: to get
a magnetic field, we have to have a net current. How does this idea explain
magnetism in materials? Imagine helium, an atom with two electrons. Now
if these electrons go around in opposite directions, the currents they produce
will be opposite to each other. The magnetic field of one current loop will
cancel the magnetic field of the other, leading to no net magnetic field. The
spin also affects the magnetic field, and if the spins are pointed in the same
direction (both up or both down) the field gets stronger, while if they are
aligned in opposite directions the spin gets weaker. In helium, the spins of
the two electrons are paired up-down, so helium would not be very magnetic.
In fact, helium is an “anti-magnet” and tries to stop any magnetic field going
through it. This effect is called diamagnetism and is a manifestation of Lenz’s
law which we have not covered yet.

There are a lot of atoms that have an odd number of electrons that are
not very magnetic. So far we have asked whether each individual atom will
be influenced by a magnetic field. The missing ingredient you need is for
the different atoms to strongly interact with one another. Since a material
is made up of ∼ 1023 atoms, tiny effects can become large if each atom con-
tributes a little magnetic field, and if each atom contributes a magnetic field
in the same direction as its neighbour. Otherwise one atom may decide to
have a net current clockwise, and its neighbour counter- clockwise and the
magnetic fields will almost cancel. The materials that have their outer elec-
trons interact strongly are metals (they have almost “free” outer electrons)
so highly magnetic materials are generally metals.

At the end of all this, we see that magnetism boils down to moving charges
affecting moving charges. It is no surprise that an explanation of bar magnets
took so long, as it required a serendipitous observation of how two superfi-
cially unlike phenomena (electricity and magnetism) affected one another and
a model of the atom. We have already studied how a magnetic field affects
a moving charge (see 9-3-2-1) Now we turn to the quantitative question of
how, exactly, a current produces a magnetic field.

9-3-3-2 Ampère’s Law

We will first study a simple test case: a long straight wire carrying a current.
We want to understand the magnetic field produced by this wire, i.e. how
strong it is in magnitude, where does it point to (recall it is a vector), and
how does it vary from point to point. In other words, we want to map the
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B Field produced by a long straight wire.

Field from a long, straight wire.

We will retrace some of Ørsted’s steps. He showed that a current-carrying
conductor produces a magnetic field. A simple way to demonstrate this is to
place several compass needles in a horizontal plane (for example, the surface
of a table) near a long wire placed vertically, i.e. perpendicular to the surface
of the table. Let’s assume the current direction to be coming from the bottom
and going toward the top of the table. We hook up the wire to a battery so
that we can turn the current on or off. When there is no current in the wire,
all needles point in the same direction (magnetic north). As soon as we turn
on a circuit and current starts flowing in the wire, all needles will deflect. We
have produced a magnetic field! The first thing that one notices when doing
this experiment, is that the needles orient themselves in a definite pattern.
If we draw a circle on the table with the wire at the center and we place the
compasses along the circle we just drew, we will notice that all the compass
needles will orient themselves tangential to the circle we just drew. In other
words, the B field lines for the long straight wire at a distance r from the
wire will have the shape of concentric circles of radius r. For our experiment
with the current coming out of the table, we find that the B field direction
is counterclockwise along the circles. If we flip the direction of the current,
the compass needles all deflect by 180◦, i.e. they will still point tangent to
the circle, but now their North poles point in a clockwise direction. This
observation for the direction of the B field can be summarized with the
following convenient rule, Right-hand-Rule #1: :

Point the thumb of your right hand along a wire in the direction of the
conventional (positive) current. Your fingers will now curve naturally in the
direction of the magnetic field.

What can we infer about the magnitude of the magnetic field? By sym-
metry, the magnitude of the magnetic field should be the same everywhere
along the circle. Why is this? Nothing is special about any particular point
along the circle; they are all equidistant from the wire. Likewise, if the wire
is infinitely long, there is nothing special about where we chose to place the
horizontal plane where we put our compass magnets. Moving this horizontal
plane up or down along the wire, if the wire is infinitely long, should also
have no effect in our results. To pick a coordinate system, we can set the
plane of the wire to be the x-y plane, and the direction along the wire to be
the z-axis. By symmetry, the magnetic field can therefore not depend on the
z coordinate. Therefore, we expect that the magnitude of the field at any
point will depend only on the perpendicular distance between the wire and
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Figure 9-3.6: Right hand rule for currents

that point. All points at the same distance r will have the same magnitude
(that is why the shape of a circle of radius r around the wire comes natu-
rally). It is also not unexpected that the magnitude of the field will be larger
if we have a larger current. It turns out that the magnitude is proportional
to the current. Likewise, you probably expect that if we start moving away
from the wire, the magnetic field will get weaker the farther we move from
the wire. The equation that relates all these quantities to the magnetic field
magnitude at a point ~r is:

|B(~r)| = µ0I

2πr

where the I is the current on the wire and r is the perpendicular distance
from the wire to the point we are interested in. In our experiment with a
wire on a table where we set the x-y plane to be the plane of the table, the
distance r would be the length of the 2-D vector that points from the wire to
the point. The constant µ0 is a proportionality constant called the magnetic
permeability of the vacuum, which has the value µ0 = 4π × 10−7 T · m/A.
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Example #1:
A long straight wire carrying a current I produces a magnetic field
of 1.0 × 10−4 T at a distance of 2 cm away from the wire. Find
the current I carried by the wire. How close to the wire is the field

I

F

v

B

+q

strength 1T? A proton is moving at
v = 1.5×103 m/s parallel to the wire
and in the same direction as the cur-
rent a distance of 1.0 cm away from
the wire. Find the magnitude and
direction of the magnetic force ex-
erted on the proton by the magnetic
field produced by the wire.

Solution:
We use Eq. 9-3-3-2 to solve for the current I. Once we find the current, we
set the field equal to 1 T to solve for the distance r from the wire.

Solve for I: I = 2πr|B|/µ0

Insert numerical values: I = 2π(0.02m)(1.0×10−4T)/4π×10−7Tm/A =
10 A

Solve for r with new value for |B|: r = µ0I/2π|B| = 2 µm

Direction of B: By RHR1, the magnetic field produced by the wire at the
proton’s location is going into the page.

Direction of F : By RHR2, the magnetic force on the proton is directed
towards the wire.

Magnitude of F : We know that |B|=0.1 T at 2 cm from the wire. At 1
cm from the wire, since |B| ∝ 1/r, we must have |B|=0.2 T. We now
insert —B— into the equation for the magnetic force, q|v||B| sin θ =
(1.6× 10−19C)(1.5× 103m/s)(0.2 T)(sin 90◦) = 4.8× 10−17N

Field from a current-carrying coil

We would now like to describe the magnetic field from another simple con-
figuration of electrical current. Consider a coil of radius r0, made up of N



176 CHAPTER 9-3. MAGNETIC FIELDS

loops, carrying current I, as shown in Figure 9-3-3-2
Suppose we are interested in the magnetic field along the coil’s axis, at

point P, a distance z along the axis from the coil. We can think of the coil
as N copies of a single loop of current I. Each loop is just a curved wire
of current. If we apply the right-hand-rule to a small piece of one of these
loops, we find that no matter which part of the loop we choose, the resulting
B-field is pointed up for our point P, or indeed any point on the axis of
the coil. It makes sense that the further from the coil we get, the smaller
the magnitude of B will be, and that it will be directly proportional to the
number of loops we have as well as the current flowing through the loop as
before.

Indeed, it turns out the magnetic field at distance z along the axis (as
long as we are relatively far from the coil) is given by:

|B| = µ0NIr
2
0

2z3

Now, what if we’re instead interested in the magnetic field at point Q,
in the plane of the coil? Again we turn to the right-hand-rule for currents.
Notice that this time not all parts of each loop result in a contribution to
the B-field in the same direction. The side of the loop closest to Q gives a
contribution to the field in the down direction, while the side farthest from Q
contributes in the up direction. Since the field strength drops with distance,
the closest side has the larger contribution, and the overall field is in the
down direction. But one consequence is that the magnitude of the field at Q
is significantly less than the magnitude of B on the axis at a similar distance,
since the field on the axis has none of this cancellation.

The overall magnetic field lines are shown in the figure. Note the simi-
larity with the field lines of a bar magnet from Figure 9-3.3. The similarity
demonstrates that the magnetic field of a permanent magnet really can be
described as the result of many small current loops lined up with each other.

9-3-4 Magnetic induction

We have seen how Ørsted was able to demonstrate that electric currents can
produce magnetic fields. The English physicist Michael Faraday, a brilliant
experimentalist, was the first to demonstrate the converse effect: magnetic
fields can be used to produce electric currents. This is now called the prin-
ciple of magnetic induction. It is interesting to note that Faraday had little
formal schooling, so mathematics was by no means his strength. Neverthe-
less, he was one of the most influential scientists not just of his time, but his
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contributions continue to find applications to this day. For example, when
he demonstrated that magnetic fields could be used to produce a current in a
wire loop, politicians were not impressed as they failed to see the use of it. It
turns out that this is the critical step in making power plants and making elec-
tricity available outside of the techniques of kite-flying-in-a-lightning-storm
and carrying large arrays of batteries. The alternating-current circuits that
power all the electrical grids of the world have as part of their components
a generator that is based on magnetic induction. More recently, highly fuel-
efficient vehicles such as the gas-electric hybrid cars employ a technology
called regenerative braking. This uses a device that can give power to the
wheels of the car by means of an electric battery, and can recharge the battery
during braking by running the circuit in “reverse”, transforming the kinetic
energy of the car’s motion into electric potential energy stored in the battery
and saving fuel as a result. This recent application has large implications for
the world’s economy and is of global environmental impact, and at its core
lies Faraday’s principle of induction: that we can transform magnetic fields
to electric currents.

9-3-4-1 Magnetic flux definition

Before we tackle the actual form of the principle of magnetic induction, we
first need to define a quantity which is crucial to understand it quantitatively:
the concept of magnetic flux. Let us discuss first the idea of flux in general
using a familiar example: rain falling on the windshield of a car. Let us
suppose that we want to quantitatively determine the amount of rain that
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hits the windshield of the car. For simplicity, let us first assume that the rain
is falling vertically down, and that the shape of the windshield is a rectangle.
Let us further simplify by assuming you are in a parked car, i.e. it is not
moving. If we want to find how much rain hits the windshield, we need to
consider chiefly these three variables:

• The amount of rain.

• The size of the windshield.

• The orientation of the windshield relative to the rain.

Let’s discuss each in turn. If it is raining hard, there will be a lot more
raindrops hitting the windshield than if it is raining lightly. If the size of
the windshield is large, likewise there will also be more raindrops hitting
it. The orientation between the rain and the windshield will also determine
how much rain hits the windshield. For rain falling vertically down, if the
windshield was also vertical, there will be no rain hitting the windshield (in
the idealization that the windshield is infinitely thin). Conversely, if the
windshield was almost horizontal (or if we consider the sunroof of the car,
which is completely horizontal) the amount of rain hitting it will be much
larger. This idea of calculating the amount of rain hitting a surface can be
generalized by the concept of flux. We can consider the flux of a vector field
through a given surface area. One can think of a flux of “something” as
wanting to find out how much of that “something” passes through a given
area. In our example, rain falling vertically gives us the idea of a vector
field. More rain means that the magnitude of the vector field increases. A
larger windshield means a larger surface area. The orientation is given, by
convention, between the direction of the vector field and the vector normal
to the surface area. For the particular case of the magnetic field vector B,
we define the magnetic flux Φ through an area A as

Φ = B ·A = |B||A| cos θ

where the angle θ is the angle between the magnetic field vector B and the
vector normal to the surface area A. From our rain example, you can see
that when the rain is falling vertically down, and the windshield surface is
horizontal, the vector normal to the area will also be vertical. Hence, the
angle in the equation will be θ = 0◦, and cos θ = 1 leading to a large flux. If
the windshield surface is also vertical, the vector normal to the surface area
will now be horizontal, the angle θ will be 90◦, so cos θ = 0 and the flux
will vanish (no rain hits the windshield in our example, as we had surmised).
Note that for an open surface such as a windshield we still have the freedom
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to choose the normal vector on either side of the surface. This will have no
physical effect, but will simply change the value of the angle θ by 180◦, in
other words, the flux as we defined it changes sign. We will see shortly that
what will be important physically will be changes in flux, not so much the
actual value of the flux. So any of the choices will lead to identical changes in
flux, resolving any ambiguity. To summarize, the variables of interest when
calculating the magnetic flux through an area will be:

• The magnitude of the B field.

• The magnitude of the area under study.

• The angle between the B Field vector and the vector normal to the
area.

9-3-4-2 Faraday’s law of induction

Faraday’s Law Now that we have defined the magnetic flux Φ, we can describe
Faraday’s observations quantitatively. He sought out to describe a connection
between the magnetic field and a current in a wire in the presence of the
field. For a current to flow, we always have to provide it with a closed wire
loop. The area we will consider in the definition of flux will be the area
within the wire loop. Note that the wire can be looped in a circular, square,
rectangular, triangular, or other shape. The flux under consideration is the
magnetic flux through the area enclosed by the wire loop. Faraday then asked
what happened if you placed a magnet close to the loop and let it sit there.
Would a current appear in the presence of the magnet? He carried out the
experiment and found that there was no current in the loop. However, if you
move the magnet away, then for a brief instant a current appears. If you move
it back, then a current appears. What Faraday found is that there will be
an induced current, and therefore an induced voltage, only when
the magnetic flux changes over time. We say that this is an induced
current because there is no battery, no voltage source in the usual sense, to
create the current. The current is induced in the wire by the magnetic field.
He called the induced voltage the induced “electro-motive force”, or induced
EMF for short, denoted by E , and you can still find it under this name in
many text books. We therefore refer to his findings as Faraday’s Law of
Magnetic Induction. Specifically what he found was that

• The induced voltage E is proportional to the rate of change of the flux
with time, ∆Φ/∆t.
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• If you add loops to the wire coil, each loop will contribute equally. If
you have N coils, the induced voltage will be N times as strong.

We now summarize these findings in the equation that embodies Faraday’s
Law:

E = −N∆Φ

∆t

What this means is that you need to have a changing magnetic flux to produce
an induced voltage. If the magnetic flux does not change with time, then
there will be no current. Only if the magnetic flux changes with time will we
observe a current. Furthermore, the faster the flux changes, the larger the
induced voltage. You can picture this last statement in the following way. If
you are generating an induced current by moving a magnet close to a wire,
you will measure a larger induced current in the loop if you move the magnet
quickly than if you move it slowly. The magnitude of the rate of change is
proportional to the voltage: the faster the magnetic field changes, the greater
the induced current and induced voltage.

Note also that Faraday’s law focuses only on the effect of a magnetic field
on a wire. For simplicity, we discussed producing this magnetic field using a
magnet. However, we also can produce the magnetic field by using a current
in another wire. This is in fact how Faraday studied the induced current and
induced voltages.

The equation of Faraday’s Law also has a sign. What is the physical
meaning of the sign? It has to do with the direction of the induced current in
the loop. We have not said how we are to choose between the two possibilities
for the direction of the current. We find that the way nature works is that the
induced current flows in such a way that the magnetic field, and its magnetic
flux through the area of the current loop, must be such that they oppose the
changing magnetic flux that induced the current in the first place. This is
known as Lenz’s Law. We can illustrate how this works with some examples.

Consider a circular loop of wire on the plane of the page. There is no
magnetic field in the region of the wire, and at t = 0 a magnetic field appears
pointing straight out of the page that increases in magnitude linearly with
time. From Faraday’s Law, we know that there will be an induced voltage,
because this meets all the requirements for a change in flux. The flux is zero
at first because there is no B field. After t = 0 the flux is non-zero. The area
of the circle (which is the area enclosed by the circular wire) is constant, the
angle between the normal to the area of the circle and the B field is θ = 0,
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so cos θ = 1 and is constant, and the magnitude of the B field increases
with time. It is the last part that contributes to the rate of change in flux,
producing an induced voltage. The induced voltage will be zero for t < 0
and then will be constant for t > 0. Recall that if the magnitude increases
linearly with time, the rate of change (the slope) of the B field magnitude is
a constant, hence the induced voltage will be constant. Will the current flow
clockwise or counterclockwise? Now we use Lenz’s Law. With the normal
chosen pointing out of the page, i.e. in the same direction as the B field, the
flux is positive and increases with time. The induced current should oppose
this. Hence, it should produce a magnetic flux going through the loop that
should be negative. With the normal pointing out of the page, we see that
the B field produced by the induced current, which we call the induced field
(Bind), should be pointing into the page. By the RHR, if we curl our fingers
in the direction of the induced field with our hand around the wire, our thumb
should indicate the direction of the induced current. We then see that the
induced current for this case is flowing in a clockwise direction. A similar
analysis should be carried out for each case you encounter. You can try it
by yourself and figure out the current direction in the following variations on
the above example:

• No field before t = 0 and a B field pointing into the page for t > 0.

• A constant B field pointing out of the page before t=0 and decreasing
linearly with time from t > 0.

• A B field that looks like a triangular wave pattern with period T :
starting from zero magnitude at t=0 rising linearly with time up to
a maximum magnitude Bmax at t = T/2 and then decreasing linearly
with time down to zero magnitude at t = T and repeating itself over a
period of T seconds.

Real world applications of Faraday’s Law

We started discussing Faraday’s law by considering moving a magnet near
a loop of wire. We have found that this produces an induced current in the
wire. This idea has found its way into many applications in today’s society.

• Seismograph

One way to exploit Faraday’s Law is to realize that if we attach a
magnet to anything that moves and place it near a loop of wire, any
movement or oscillation in the object will be picked up as an induced
current in the wire loop. We can thus translate physical movements
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and oscillations into electrical impulses. In all devices of this kind,
the movement or oscillation is measured between the position of a coil
relative to a magnet, whose movement causes the current in the coil
to vary, generating an electrical signal. For example, the vibrations on
the earth produced by an earthquake produce a current that can be
amplified to drive a plotting pen. This is how a seismograph operates.

• Guitar Pickup. Les Paul, a pioneer musician of pop-jazz guitar, applied
Faraday’s Law to the making of musical instruments and invented the
first electric guitar . The “pickup” of an electric guitar consists of a
permanent magnet with a coil of wire wrapped around it several times.
The permanent magnet is placed very close to the metal guitar strings.
The magnetic field of the permanent magnet causes a part of the metal
string of the guitar to become magnetized. When one plucks the string,
these vibrations of the magnetized string create a changing magnetic
flux through the coil of wire surrounding the permanent magnet, which
“picks up” the vibrations that generate an induced current in the coil
which can then be sent to an amplifier, to the pleasure of rock fans
everywhere.

• Electric Generator. An electric generator is used to efficiently convert
mechanical energy to electrical energy. The mechanical energy can
be provided by any number of means, such as falling water from a
hydroelectric dam (where the water converts its potential energy into
kinetic energy as it falls), expanding steam in a thermo-electric power
plant (where the steam can be heated by burning coal or oil, or by a the
heat released in a controlled nuclear reaction) or your hand twisting a
lever in a circle. In all cases, the principle is the same, the mechanical
energy is used to move a conducting wire coil, typically by rotating
it, inside a magnetic field. In this case, the area of the coil is the
constant, the magnitude of the field is constant, so the cos θ term is
the one that produces a changing flux, i.e. the change in the relative
orientation between the B field and the normal to the area of the coil.
For this case, consider the simple scenario where we rotate the coil with
constant angular speed ω. The rotation angle is given by θ = ωt, and
the flux will be proportional to cosωt. From differential calculus, the
time rate of change of the flux will then be proportional to ω sinωt,
so the induced current will oscillate sinusoidally. In other words, the
current in the coil alternates in direction, flowing in one direction part
of a cycle and in the other direction for the second part of the cycle.
For this reason, this is referred to an alternating current generator, or
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simply an AC generator. The standard plugs you use to power all of
your electrical appliances are all powered by an electric generator of
this form.

• Electric Motor.

• Hybrid cars: regenerative braking.
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Unit 9:

9-4: Electromagnetic waves:
light
When we started discussing the electric and magnetic fields they seemed to
be quite separate. We knew that any electric charge (moving or not) created
an electric field, and that any moving charge created a magnetic field. Other
than that there was not a lot of similarity: the forces produced by the electric
field looked very different than the forces produced by the magnetic field,
and there were not “magnetic charges” (monopoles) for magnetic field lines
to start or end on.

Then we started to discuss induction in §9-3-4, where we discovered that
changing the magnetic flux through the loop caused an electric current to
flow. If we kept the magnetic field constant and moved the wire then we
could make some sense of this: by pulling the wire we had moving charges
and by calculating the force on the moving charges we could show that under
some circumstances we got a current. These circumstances corresponded to
precisely those situations where the magnetic flux inside the loop changed,
and it was simply easier to use the magnetic flux definition.

But one detail has been “swept under the rug” in the preceding analysis.
We also learned that changing the flux by changing the magnetic field also
caused a change in flux, and hence a change in current. If we model our
charges as starting at rest (v = 0) then the magnetic field (changing or
not) does not seem capable of forcing them to move as |FB on charge| =

|qBv sin θ| = 0. How does the current start? The answer to this question is
that changing a magnetic field produces an electric field. The electric field
so-produced does not begin or end on charges; instead it connects with itself
so that the field lines don’t start or end (similar to the magnetic field). We
should emphasise that even though these two methods of creating an current
seem very different (one being forces applied to a wire, the other being a
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changing magnetic field creating an electric field) that for either of them or
any combination of the two the method of calculating the voltage by looking
at the change in flux works.1

The fact that a changing magnetic field creates an electric field suggests
that the electric and magnetic fields are more closely related than we origi-
nally thought. In fact, the rules of electromagnetism are inconsistent as we
currently know them! If we kept only the rules we knew, the answers to
some of our calculations would depend on how we choose to calculate them!
The change that was ultimately suggested (and shown experimentally to be
correct) is

A changing electric field creates a magnetic field.

If we accept this new rule, an interesting possibility arises. If we have a
magnetic field that is changing, we can create an electric field. If that electric
field changes, it can create a magnetic field. We could at least imagine
a situation where we start a magnetic field going, and then it creates an
electric field which is itself changing, which creates a magnetic field which is
changing, which . . . A proper mathematical treatment shows that not only
can these disturbances occur, but that these disturbances do not happen in
the same place – rather they travel like the material waves we are familiar
with. We call these propagating disturbances in the electric and magnetic
fields electromagnetic waves – more colloquially referred to as light.

9-4-1 Harmonic electromagnetic waves

While there are many different types of electromagnetic waves, including
pulse waves and spherical waves, we will devote our attention to the harmonic
wave (or plane wave). The reason is a practical one, as a long distance from
the source the wavefronts look flat and so the plane wave description is a good

1You may think that it is odd that two such disparate approaches can be summarised so
easily without caring if it is “really” the magnetic field or “really” the created electric field
that pushes the charges. This fact puzzled many physicists as well, until Einstein’s theory
of special relativity showed that the two expressions must be the same. We will not show
this here, but note it as something that does seem to be crying out for an explanation.
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one. For the electromagnetic wave it is the E and B fields that oscillate:

E(x, t) = E0 sin

(
2πt

T
± 2πx

λ
+ φ

)
ê

B(x, t) = B0 sin
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± 2πx

λ
+ φ

)
b̂

The difference from our earlier expressions are the vectors ê and b̂ at the end.
Because the electric and magnetic field are vectors they must point in specific
directions. The vector ê is a unit vector, and tells us the direction that the
electric field is oscillating along. Similar remarks apply for the magnetic field
and the unit vector b̂.

The directions ê and b̂ are related. For an electromagnetic wave travelling
through free space the electric and magnetic fields oscillate perpendicular
to one another, and are also perpendicular to the direction that the wave
travels. If you hold your thumb, index and middle fingers perpendicular
to one another you can always point your thumb in the direction of the E
field, your index finger in the direction of the B field, and your middle finger
will point in the direction that the wave is travelling. An example of an
electromagnetic wave is shown in figure 9-4.1. Because the oscillations in
both the E and B fields are perpendicular to the direction of motion an
electromagnetic wave is a transverse wave. The plane of polarisation is the
plane containing the direction electric field oscillates in and the direction the
wave travels (i.e. the plane containing ê and k̂ in figure 9-4.1).

Figure 9-4.1 demonstrates a couple of other points that are in our equations
but we have not addressed explicitly. We notice that the E and B fields have
the same wavelength λ. They are also in phase, and so must have the same
phase constant φ.2 That is why we only wrote λ and φ in the equations,
rather than placing the subscripts E and B on everything. The disturbances
in the E and B fields also travel with the same speed, which tells us that the
periods must be the same.

The amplitudes of the electric and magnetic fields, E0 and B0, are also
related. The stronger the magnetic field, the more “change” in the magnetic
field is going to occur as it oscillates so we would expect a bigger electric

2Technical aside: this statement should really be “modulo 2π”.
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Figure 9-4.1: A diagram of an electric field at a constant time. The electric
field (vertical) and magnetic field are perpendicular to each other and the
direction the wave is travelling.

field. This is in fact the case. The relationship between the amplitudes of
the oscillations of the electric and magnetic fields is

E0 = cB0

where c is the speed of light (approximately 3× 108 m/s).

Test yourself:

If an electromagnetic wave had its electric field pointing to the right on this
page, and the magnetic field pointing to the top of the page, which way would
the electromagnetic wave be travelling?

9-4-2 The electromagnetic spectrum

Our picture of the electromagnetic field being an oscillating electric field
creating an oscillating magnetic field, which in turn creates an oscillating
electric field, which in turn . . . suggests a way of creating electromagnetic
waves: taking charges (the source of electric fields) and oscillating them up
and down to get the whole process started! The frequency with which the
charge bounces up and down gives the frequency of the electromagnetic waves
produced, similar to how the frequency of someone bouncing up and down in
a pool sets the frequency of the outgoing water waves. For electromagnetic
waves, like all the other waves we have dealt with, the frequency is determined
by the source.
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This seems a little odd, however. Most of us would have been “zapped”
by a sweater we were wearing at some point in our lives, due to the build-up
of charge on it. By swaying backwards and forwards we were making those
charges oscillate, but we did not seem to suddenly create light! In Physics 7A
we learned that atoms at temperatures higher than absolute zero oscillated,
and these atoms are made up of electrons and protons yet most objects do
not appear to glow in the dark. In fact, it seems if light is the oscillation of
charge it should be very difficult to find darkness at all!

In fact we do give off electromagnetic radiation as we sway back and forth,
and objects in dark rooms do glow. The “light” created is just not visi-
ble light. For visible light the charges have to be oscillating back-and-forth
around 1014 times per second! For objects at room temperature (around
300K) the oscillating atoms give off electromagnetic light at roughly 1013

Hz. This light is called infrared, because it is right next to the red (visible)
light. While people cannot see this light, some animals can and we can make
cameras that can detect this light. This is how night-vision goggles work
for example. For an object to give off a significant amount of visible light
we must make its atoms vibrate more, and as we learned in 7A one way to
do this is to increase the temperature. A wood fire, for example, burns at
around 1500 K. While most of the light is let off in the infrared, enough is
let off in the visible that the flames can be seen. The night sky that we see
is full of electromagnetic radiation with a frequency of 3× 1011 Hz which we
cannot see directly. Just like infrared light, we have devices that can detect
this light, and studying it is giving us further insights into the origin of the
universe.

Different frequencies of electromagnetic waves get used for very differ-
ent purposes. We are familiar with visible light already, and most of us
have probably heard of infrared and ultraviolet light. At the lowest fre-
quencies (and hence longest wavelengths because λ = vwave/f) we have
the radio waves. This is a broad range of frequencies lower than roughly
109 Hz. Most of our television and radio programmes are broadcast at
this frequency. Above that we have the microwave frequencies, which are
used in RADAR and microwaves. Above 1011 Hz we have the infrared,
which are the frequencies that most objects glow most strongly in pro-
vided their temperature is between 3 K and 5000 K. The “narrow” range
between 4 × 1014 Hz and 7.5 × 1014 Hz corresponds the visible spectrum.
In this range different frequencies correspond to different colours of light.
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At even higher frequencies we go into ultraviolet light. This region covers
frequencies from 8.6× 1014 to 3.75× 1016 Hz and is further broken down into
UVA, UVB, UVC, Far UV, and Extreme UV categories. UV light can be
damaging to the skin. The risk increases with the frequency of the UV light.
The sun emitted radiation in the UVA, UVB, and UVC sub-bands, however
almost all of the UVB and UVC radiation from the sun is absorbed in the
Earth’s ozone layer in the upper atmosphere.

The use of the term X-ray varies a little. Some people take the definition
of an x-ray as the manner in which the light is produced, such as an atomic
transition. Others take the x-ray to simply be a frequency range like our
previous definitions (this latter set tend to be astronomers talking about “x-
ray telescopes”). The definition is actually fairly irrelevant, except for the
purposes of communicating with others. Whichever definition we use, it is
accepted that x-rays have very high frequencies (greater than 3.75 × 1016

Hz) and are energetic enough to pass through tissue. Hence we use x-ray
machines to image the bones.

Gamma rays are produced in nuclear transitions, and are any photon that
has frequencies higher than 1022 Hz.

Fire and chemistry*

We remarked that a typical wood fire has a temperature around 1500 K,
which peaks in the infrared, but that some light is emitted in the red as well.
For objects giving off light because of high temperatures (e.g. fire or hot
metal) low temperatures mean a dull red, and as the temperature increases
the frequency of the peak of the emitted light increases. The amount of
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Part of Typical size
Spectrum in vacuum

Short wave radio λ ∼ Building
AM/FM/TV λ ∼ Person
Microwaves λ ∼ Insect
Infrared λ ∼ Flea
Visible λ ∼ Cells
Ultraviolet λ ∼ Molecules
X-rays λ ∼ Atoms
γ-rays λ ∼ Nuclei

Colour λvac range λ middle Frequency
Red 620–750 nm 700 nm 4.3× 1014 Hz

Orange 590–620 nm 600 nm 5.0× 1014 Hz
Yellow 570–590 nm 580 nm 5.1× 1014 Hz
Green 495–570 nm 540 nm 5.5× 1014 Hz
Blue 450–495 nm 470 nm 6.4× 1014 Hz
Violet 380–450 nm 400 nm 7.5× 1014 Hz

Table 9-4.1: Labelling the different parts of the electromagnetic spectrum.
Note that the frequency definitions are valid in any medium, but that when
light travels into a different medium the wavelength changes. The wave-
lengths presented here are only correct in vacuum.

spread in frequencies also increase as the temperature goes up, so the fires
always have some red in them. As the temperature goes up we go from red to
orange to white, as white contains all of the colours. We do not get objects
so hot they are blue – there is always some contamination from the red (and
lower) part of the spectrum.

When we study chemistry we will sometime see flames of various colours
as we oxidise different chemicals (e.g. in a Bunsen burner). If you have not
seen this in chemistry you have probably seen it in a fireworks show – we use
various chemicals in the fireworks so that we have different colours when we
oxidise them. How do we reconcile this with the statement made above: as
objects get hotter they get more of the visible spectrum, but still retain the
“red” portion of the spectrum? The answer is that the fires we mentioned
above are really thermal fires due to the random motion of charges and, more
importantly, the equipartition of energy. If we have a pure substance that
reacts strongly we can get chemical fires which have temperatures dictated by
the energy levels available to the atoms. This effect is a quantum mechanical
one that we have not studied yet, and is touched upon briefly in unit 10-1.

9-4-3 Intensity and energy of electromagnetic

waves

While we have not emphasised it so far, electric and magnetic fields both
contain energy. The total amount of energy depends on the values of the
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fields everywhere, so it is more convenient to define the energy density of
the fields. This is the amount of energy per unit volume the fields have,
and we only need to know the value of the electric and magnetic fields at
that point. This is similar to our motivation for introducing energy densities
when we discussed fluids in Physics 7B. The energy density of the electric
and magnetic fields are

uE =
1

2µ0

E2

c2
, uB =

1

2µ0

B2

where µ0 is the permeability of free space introduced when we discussed
Ampère’s law in §9-3-3-2, µ0 = 4π × 10−7 N/A2. These results are a little
bit tricky to derive from what we already know, and we do not attempt a
derivation here. We will just take this energy density as given.

These energy densities apply for either an electromagnetic wave or static
electric or magnetic fields. In the case of an electromagnetic waves the energy
density is the sum of the contributions from the electric field and magnetic
field. We know that when the electric and magnetic fields hit zero then there
is no energy in the electric or magnetic fields. Both the electric and magnetic
fields have their peaks together, and that is where the energy density is
greatest:

umax,EM = ue,max + ub,max

=
1

2µ0

E2
0

c2
+

1

2µ0

B2
0 , (Because both E and B are maximum).

If we recall the result from the previous section E0 = cB0. We find that the
most energy density that an electromagnetic wave has is

umax,EM =
1

µ0

B2
0 .

The energy density oscillates between 0 and umax, we can show that the
average energy density is half the maximum value

uave,EM =
1

2µ0

B2
0 .

Our eyes (and other devices like film) are sensitive to how much energy
comes into them per unit time, or the power of the light. The total power
the light source is not necessarily a good measure of how bright something is
– if the object is a long distance away then most of the light does not go into
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our eyes (or hit the film). Instead we define intensity as the power of light
going through a unit area. The more intensity the light that reaches us has,
the “brighter” the light appears. To calculate the intensity, we see that all
the light passing through the area A in the next one second is all the light
in the box shown below:

A

Light will travel c meters in
the next 1 second

All light in this box passes through A in next second

The average energy density is umax, so the total energy passing out the end
of this box in the next second is umaxcA. Dividing by the area we get the
intensity I:

I =
umaxcA

A
=

c

2µ0

B2
0 =

1

2µ0c
E2

0

9-4-4 Polarisation and polarisers

We have already discussed that an electromagnetic wave is transversely po-
larised, and this is fairly unambiguous because both the electric and magnetic
fields oscillate perpendicular to the direction the wave travels. We also men-
tioned that the plane of the polarisation of the wave was in the same plane
that the electric field oscillated in (i.e. the plane that has the direction of the
wave and ê in figure 9-4.1.) For example, vertically polarised light would have
its electric field oscillating up-and-down. On one level we can just take this
as a definition, but it is useful to note why we chose to define the polarisation
this way instead of using the magnetic field.

For a wave oscillating in free space it does not make much of a difference if
we defined the plane of polarisation as the plane of oscillation of the electric
field or the magnetic field. In fact, for an electromagnetic wave travelling in
a vacuum it does not matter much what the polarisation is at all. When this
wave has to interact with matter – by being absorbed, scattered, reflected or
refracted – then the polarisation becomes important.

Why choose the electric field over the magnetic field for defining the po-
larisation? When a light ray hits an object at rest, to a good approximation
the charges are more or less at rest themselves so the magnetic field from the



194 CHAPTER 9-4. ELECTROMAGNETIC WAVES: LIGHT

wave cannot exert a force on the particles. The electric field, however, can
exert a force on the particles and get them to move. But then why doesn’t
the magnetic field become important? Well, even if the particles are moving
significantly we know that they must be travelling slower than the speed of
light c. Because the magnitude of the electric field E0 = cB0 for an electro-
magnetic wave, the magnitude of the electric force on the particles must be
larger than the magnetic force on the particles! Finally we can easily figure
out the direction of the electric force on particles: the force on the charge is
in the direction of the field for a positive charge, or against the field for a
negative charge. Compare this to the rules we would have to use to figure out
the direction of the magnetic force on a charge! We choose to talk about the
polarisation in terms of the electric field because the electric force is greater
than the magnetic force and it is easier for us to figure out the directions.

The polarisation of a wave depends on how the wave was produced and
what it interacted with. Lasers typically (but not always) produce polarised
beams. Light from thermal sources (such as an incandescent lightbulb or
the sun) are produced by the random vibrations of atoms, so at different
times the light is polarised completely differently. We call these sources
unpolarised. Some polarisations are preferentially reflected or absorbed by
matter, so another way of polarising light is to have it interact with matter.

9-4-4-1 How a polariser works.

There are many materials which polarise light. Synthetic plastics (called
polaroids) and natural crystals are common examples. The common feature
among these materials is that they all have long linear chains of atoms which
are oriented in one direction, and that the electrons in these media can travel
more easily along the direction of the atomic chains. This allows the electric
fields which are oriented in the direction of the atomic chains to transfer their
energy to the electrons in the medium. The component of the electric field
which is perpendicular to the atomic chains cannot move the electrons in that
direction and is therefore transmitted. If we are given any polarisation of light
we can break it into components: a component for which the polarisation of
the wave is in the parallel to the chains of molecules (which will be absorbed
by the electrons) and a component which is perpendicular to the chains of
molecules (which will pass through as they cannot be easily absorbed). We
call this perpendicular direction the transmission axis or polariser axis, as
this is the direction the light that has passed through the polariser will be
polarised.
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Polarisation or transmission axis
(Electrons cannot oscillate this way)

Absorption axis
(E

lectrons can oscillate this w
ay)

Molecular
chains

Figure 9-4.2: A diagram of a polariser. It is easy for the electrons to travel
up and down the absorption axis along the chains, so the light’s energy is
easily transferred to the electrons. It is harder for the electrons to travel
in the direction of the polariser or transmission axis. Any light that passes
through this polariser will come out horizontally polarised.

Example #1:
Vertically polarised light travelling into the page hits a polariser. The polar-
ising axis is 30◦ from the vertical. What is the intensity of the light coming
out of the polariser as a fraction of the incoming light? Which way is the
light leaving the polariser polarised?

Solution:
We will call the amplitude of the electric field of the original wave E0, and
we know that the initial electric field is vertical. The polarisation axis and
the electric field are shown on the picture to the left. On the right we break
the electric field into a part that is along the polariser axis (and will be
transmitted) and a part that is along the chains (and will be absorbed).
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The magnitude of the electric field that makes it through the polariser has a
magnitude Etrans = E0 cos 30◦, and is oriented 30 degrees from the vertical.
The intensity of the light that makes it through the polariser is

I =
1

2µ0c
E2

=
1

2µ0c
E2

0 cos2 30◦ =

(
1

2µ0c
E2

0

) (
3

4

)
But E0 is just the initial intensity, so E2

0/(2µ0c) is the initial intensity I0.
Therefore we have

I =
3

4
I0.

So our final result is that the outgoing light is polarised 30◦ from the vertical
and has 3/4 of the intensity.

In general we may be interested in how much light gets through a given
polariser if we have light of a given intensity I0 coming in. Using the same
reasoning as the previous example, if the electric field is E0 and the angle
between the polarisation plane of the light and the polarisation axis of the
polariser is θ then we can break the field into two parts:

Eblocked = E0 sin θ, Etrans = E0 cos θ.

The intensity of the light coming out is proportional to the transmitted elec-
tric field squared, so we have

Iout = I0 cos2 θ.

This equation is sometimes referred to as Malus’s law.
For unpolarised light, Iout is always half the initial intensity.
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9-4-5 Do we need fields?*

When we introduced fields we introduced the idea of a direct method of
calculating forces and a field method for calculating forces. At the time it
seemed like the field was little more than a book keeping device, and that if
were willing we could use the direct method between all the particles that
we were interested in. Even when we discussed magnetic fields and did not
give a direct method because the field method was far easier, it seemed like it
was possible to construct a direct method with enough patience. Nothing we
discussed earlier seemed to require fields, fields just made the job easier. One
might be tempted to ask if fields are convenient mathematical constructions.

To show why fields (or something like them) have to exist, consider moving
a charge around for a short time. Moving the charge around requires that you
give the charge some energy, and that charge radiates away that energy as
electromagnetic radiation. Sometime later the wave hits some other charges,
and starts them oscillating. At all stages energy is conserved.

What would happen if we did not know about fields? In that case we
would see the charges that we originally dumped energy into slow down and
eventually stop. It seems like we lost energy, but we might not worry about
that – after all it could have lost that energy to collisions with other atoms.
But then sometime later the other set of charges would start to oscillate all
by themselves! It would seem like we lost some energy for a short time, and
then got it back again later. This would lead us to three possibilities:

1. Maybe the conservation of energy is not valid (wrong).

2. Maybe the energy went into an energy system (such as a field) that we
didn’t count, and everything is really okay.

We have found energy conservation immensely useful so we would hate to
abandon it unless we absolutely had to. Obviously the choice that we are
advocating is the second one, but some may still object. There is a third
possibility that allows us to not have fields but still conserve energy:

3. Maybe the energy of a system does not only depend on it is doing right
now, but also what happened to it in the past. That is, maybe energy
is not a state function.

This is a very clever attempt to get around having to accept fields, but
unfortunately it fails. The whole point of energy conservation is that the



198 CHAPTER 9-4. ELECTROMAGNETIC WAVES: LIGHT

energy is a state function. If statement 3 were true we would have to know
the entire history of the universe (in principle) to figure out what the energy
should be now. The point of energy conservation is you only have to know
about the initial (or final) time and do not need to do the hard work of
figuring out exactly what happened in between.

So in order to save the principle of the energy conservation in a useful
manner, we are forced into accepting that there is an additional energy system
– the field. The price we pay is that when we choose our initial and final
times we should pay at least a fleeting thought to how the energy in the
electric and magnetic fields have changed.

9-4-6 Summary

1. We learned in §9-3-4 that a changing magnetic field causes a changing
electric field. Now we learn that a changing electric field causes a
magnetic field.

2. The field lines from an electric field created by a magnetic field form a
loop. The idea that electric field lines only beginning or end on charges
is still valid.

3. The idea of voltage is not defined in the case of a magnetic field creating
an electric field. This is because the amount of energy a particle has
does not only depend on where it is, but on its past history.

4. The electric and magnetic fields are very closely related, and sometimes
referred to as the electromagnetic field.

5. An electromagnetic wave describes light. The different frequencies of
electromagnetic waves determine the colour of the light (if it is visible).
Unlike the other types of waves we have already discussed an electro-
magnetic waves does not require a medium, which is why we can see
through empty space.

6. Electromagnetic waves are transversely polarised. Because there are
many directions perpendicular to the direction of travel we still ask
about the polarisation (direction) of an electromagnetic wave. The
definition of the polarisation direction is the direction that the E field
is parallel (or anti-parallel) to.
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7. Intensity as energy per unit area, and the brighter the light the higher
the intensity.

8. Become familiar with how polarisers work, and to be able to deter-
mine the brightness and polarisation of light after it passes through a
polariser.

9. Fields are not just mathematical constructions, but are required to
conserve energy and momentum.

Exercises

1. We learned in §9-4-3 that the average energy density in an electro-

magnetic wave was uave, EM =
B2

0

2µ0
, where B0 is the amplitude of the

magnetic field. How would you write uave,EM in terms of the electric
field’s amplitude E0?

2. If I want horizontally polarised light to pass through a polariser, but
have 20% of its original intensity, what possible polarisation angles θ
may I use? What is the polarisation of the wave that leaves?

3. I start with horizontally polarised light, as in the previous case. This
time, I have two polarisers (although I can choose to only use one).
I want the light to come out after passing through the polariser(s) to
have 20% of its original intensity and be horizontally polarised. Is this
possible? If so, describe how to set the polariser(s) up.
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Unit 10:

10-1: Quantum mechanics

10-1-1 Introduction

Let us start with something familiar. Take a cup. Try filling it with water.
Now, we know that we cannot put any more than one cup of water in there,
right? So if someone asked you how much water could go in the cup you
would probably respond with an answer like “I can put any amount less than
a cup in here.”

But we also know that water is H2O molecules. A standard cup is 250 m`,
which is roughly 8.4×1024 molecules of water. The number is not important,
but you should know how to calculate it (the calculation at the end of this
section). But water molecules cannot be split in half and still called water! So
the amount of water you can fit into a cup cannot take any value: you must
have 0 molecules of water, 1 molecule of water, . . . or 8.4× 1024 molecules of
water in the cup. We say that the amount of water in the cup is quantised
as we can only fit certain allowed quantities of water into the cup.

In quantum mechanics, many of the quantities we deal with such as energy
and angular momentum can only take certain values as well. The word
“quantum” is derived from the Latin word quantus, the same root word as
quantity. The name quantum mechanics comes about to remind us that
many of the things that we deal with only come in certain quantities. So far
we have considered objects interacting by exchanging energy, momentum or
angular momentum with one another assuming that we could transfer any
amount of energy, momentum or angular momentum we wished. We will
focus on quantising the energy and see what the consequences are.

With the example of quantised water molecules, the picture we have of
molecules makes it easy to visualise why water is quantised. We also know
that any time we have water, the “quantum” (i.e. smallest amount) will

203



204 CHAPTER 10-1. QUANTUM MECHANICS

always be one molecule. What about something abstract like energy? What
picture should we have in mind, and is the “quantum” of energy always the
same? The answer to this final question is no; the allowed energies of a
system depend on the situation. For example, an atom has different allowed
energies that a mass on a spring. 1 One of the mathematically more difficult
parts of quantum mechanics is finding the allowed energies of a given system.

Example #1:
How many molecules are there in a cup (250 m`) of water?

Solution:
This solution uses the definition of moles and atomic weights as covered in
Physics 7A.

We know that the density of water is 1 g per cubic centimeter, or 1 g/m`.
A cup of water is 250 m`, so the mass of water is

mcup of water = ρV =

(
1 g

mL

)
(250 m`) = 250 g

The molecular weight of a water molecule is given roughly by the fact that
oxygen has 16 nucleons (8 protons and 8 neutrons), and hydrogen has 1
nucleon. The total molecular weight is 16 + 1 + 1 = 18. This means that
each mole of water molecules has a mass of 18 grams. The number of moles
in a cup of water is

250 g =
18 g

mole
× nmoles

Therefore the number of moles is 13.9. Each mole has an Avogadro’s number
of particles by definition. So the total number of water molecules is

Nmolecules = NA × nmoles =

(
6.02× 1023 particles

mole

)
× (13.9 moles)

= 8.4× 1024 particles

So a cup of water has 8.4× 1024 molecules of water in it.

1Technical aside: the angular momentum a particle is allowed to have depends on the
type of particle, but not on the potential that particle is placed in.
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In the quantum unit our plan is to tell you the allowed energies for three
systems:

• A simple harmonic oscillator (e.g. mass-spring, atomic bonds)

• The hydrogen atom

• A particle confined to a box

We study these three systems to get an idea of what the consequences of
only being allowed to transfer specific amounts of energy between systems
are. After this we deal with how energy gets quantised in the first place,
and some of the strange nature of very small objects. The reason we take
this approach is that in science we are trying to find the simplest set of
assumptions to describe the world. Taking energy levels for granted helps us
explain phenomena relevant to biology (e.g. photosynthesis) and chemistry.
The later sections §10-1-3 discusses why energy is quantised in the first place
is a lot more complicated, but leads to more powerful predictions. This
is similar to the approach we took in Physics 7A – we started with the
three-phase model and then later developed the ideas of atoms and modes
to explain (at least some of) the reasons why we had a three-phase model.

10-1-2 Quantised energies

Until this unit, our model of energy allowed a particle to have any energy
value. In the quantum mechanics model, this is still true of particles moving
freely through space, but the energy of a confined particle is quantised –
meaning only certain values of energy are allowed, as discussed in the intro-
duction. Like other models developed in this volume, understanding a few
key ideas about quantised energy levels will enable us to make sense of a
variety of phenomena, from the emission spectrum of the hydrogen atom to
the unfreezing of modes in vibrational atoms.

When we describe the energy of a particle as quantised, we mean that
only certain values of energy are allowed. Perhaps a particle can only have
1 Joule, 4 Joules, 9 Joules, or 16 Joules of energy. In this case, whenever we
measure the particle’s energy, we will find one of those values. If the particle
is measured to have 4 Joules of energy, we also know how much energy the
particle might gain or lose. The particle could only gain the exact right
amount of energy to get to a higher energy level–in this case, it could gain
5 Joules (to reach the 9 J level) or 12 Joules (to reach the 16 J level). No
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other amount of energy could be added, other than 5 Joules or 12 Joules.2

Similarly, if the particle were to lose energy, the only amount it could lose
is 3 Joules, leaving it with 1 J. The energy state with the least amount of
energy is called the ground state.

How does a particle change its energy level? We learned in Physics 7A that
if we consider all the energy systems involved in a process then the energy
is conserved. If a particle goes to a “higher” energy level (i.e. gains energy)
that energy must come from somewhere.3 Likewise, if a particle goes to a
“lower” energy level, that energy must be transferred into another system.
The most common systems for small systems of particles to transfer energy
to or from are vibrations of molecules or light.

We know that energy is always conserved if we include all energy systems
involved in the process. So where did this energy come from, or where did it
go? The mechanism for conserving energy can be anything from heat (often
the case in vibrating molecules) to light (the usual mechanism in transitions
of electrons). We will talk about the energy of light in more detail in §10-1-
2-2.

Every system has a collection of allowed energy levels is called the energy
spectrum. These energy levels tell us the total energy the particle is allowed,
which is usually the sum of the kinetic and potential energies. The allowed
energies depend on the potential energy of the system (PE(r)) and the mass.
In effect, every potential energy forms a “container” of sorts that confines the
particle to a specific area. Each unique container has its own set of energy
levels. We will develop this idea with more examples below in §10-1-2-1.

As discussed earlier in this volume and in previous quarters, the potential
energy of a particle is not important. It is the changes in potential energy
that matter. In quantum mechanics, this is still the case. Though we can
set the zero of potential energy at any place, we make conventions that make
the interpretation as simple as possible.

2In actuality, there are usually an infinite number of allowed states, not just the four.
3Because the energy level is the total energy, we cannot have energy transferred from PE

to KE (for example). Changing the energy level means interacting with another system.
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Test yourself:

In the example mentioned in the text where the particle can have 1 J, 4 J, 9
J or 16 J of energy, what is the energy spectrum? What is an example of an
energy level?
(Note: there is no physics involved here, just a check that you have the defi-
nitions under control.)

Quantisation of light: photons

Just as we can think of ordinary matter being quantised (as illustrated by the
example with water), we also find that light comes in indivisible “packets”
that we refer to as photons. Unlike atoms, we do not model these photons as
being made up of smaller particles. We will discuss photons in more detail in
§10-1-2-2 , but at the moment we only need a couple of facts about photons.

1. The energy of a photon depends on its frequency f :

Ephoton = hf,

where h = 6.636× 10−34 J s is Planck’s constant , a universal constant.
We know from §9-4-2 that the frequency is related to the type of light we
are dealing with. In particular, different colours correspond to different
frequencies and therefore have different energies.

2. A photon is the smallest amount of light energy we can get (at a par-
ticular frequency).

A useful analogy is to again consider different elements: to a good approxi-
mation we can think of mass as being quantised, with the mass of individual
atoms being the “indivisible” unit of mass (after all, it is hard to break up
atoms!). However different elements have different masses. Each photon is
an indivisible unit of light energy, but different frequencies have a different
“fundamental amount” of energy. The light that we deal with everyday is
typically made up of many photons, so we don’t notice the individual photon
nature of light any more than we notice the individual atoms in the materials
we use everyday.
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10-1-2-1 The potential determines the energy spec-
trum

Gaining a better understanding of three important energy spectra will help
us learn about a large variety of phenomena. The first spectrum we will
consider is called the infinite well. In this system, a particle is trapped in
such a way that it can only be between two points, no matter how much
energy it has. We contrast this with a harmonic oscillator (like a mass on a
spring), where having more energy enables a particle to travel through more
distance. The third system we will explore is a system with a single electron
bound to a nucleus.

An example of an energy spectum for each of these three energy systems is
shown in figure 10-1.1. We will examine each in more detail. By convention,
the vertical axis represents energy. The horizontal has no meaning. In looking
at these spectra, focus on how the spacing between consecutive energy levels
is different in the three situations. Note that the levels are evenly spaced
for the oscillator (center), closer together at low energies for the infinite well
(left) and closer together at higher energies for the hydrogen atom (right).

E E E

Figure 10-1.1: On the left is the energy spectrum of the infinite well, in the
center the spectrum of a harmonic oscillator, and on the right the spectrum
of a electron in a hydrogen atom.
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The infinite well

The infinite well is a system where a particle is trapped in a box of fixed
size, but is completely free inside the box. To keep the particle trapped in
the same region regardless of the amount of energy it has, we require that
the potential energy is infinite outside some region. We will choose to take
the potential energy to be zero inside the box.

PE

Distance
Box length L

Inaccessible
regardless
of energy

Inaccessible
regardless
of energy

The infinite well seems to be the least useful of the situations we will study.
Very few physical situations are similar to the infinite well. We introduce this
system because it has the simplest potential available. If a particle is inside
the box then it has no potential energy. If the particle is anywhere else, it has
infinite potential energy. Because our particles can only have finite energy
this ensure the particle stays in the box. Also, since there is zero potential
energy inside the box, the total energy of the particle is equivalent to the
kinetic energy of the particle. If the particle gains total energy, we know it
must have gained kinetic energy.

In §10-1-3-5 we will develop the formula for the energy levels of a particle
trapped in a square well. For now, we will make sense of the equation without
worrying about its derivation. Suppose that the length of the box is L, and
the particle trapped in this potential has a massm. Then the allowed energies
are

En = n2 h2

8mL2

for any positive integer n, and h is Planck’s constant again. Because n ≥ 1 we
see that the minimum amount of energy the particle can have is E1 = h2

8mL2 .
4

Because the potential energy is zero inside the box, we see the particle always
has some kinetic energy, and is always vibrating. For a quantum particle in
a box it is impossible to make it sit at rest.

4Strictly speaking, we could always redefine where we put the zero of potential energy
so E1 = 0. However, the critical part is the kinetic energy would be non-zero, so the
particle would still be vibrating.
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Example #2:
Suppose you have a particle in the ground state of the infinite square well
potential. You also have a device allowing you to add energy to the particle.
You start by trying to add an infinitesimally small amount of energy, and
nothing happens. If you slowly increase the amount of energy you try to add
to the particle, what is the smallest amount of energy you can successfully
transfer?

Solution:
We know that the particle’s energy is quantized, and that the only allowed
levels are En = n2 h2

8mL2 . If the particle begins in the ground state, then
ninitial = 1. Adding very small amounts of energy will not have any impact
on the particle’s energy, because the particle cannot gain energy unless it
can transition to the next higher energy level, when nfinal = 2. The energy
we must add corresponds to the difference in energy levels:

∆E = Efinal − Einitial

= E2 − E1

= (4− 1)
h2

8mL2
= 3

h2

8mL2

The only way the particle will make the transition from the ground state
to the first excited state is if something transfers 3 h2

8mL2 into it, giving the
particle just the right amount of energy to make the transition.

For the infinite well potential, the energy levels are proportional to n2.
This means that it is easier to transition between the lower energy levels
and harder to transition between higher energy levels, where the energy gap
is larger. Also, the energy gap between consecutive levels is smaller if L is
bigger, corresponding to a wider potential.

Example #3:
The protons and neutrons of an atom are, to a good approximation, confined
to the nucleus. We will model the nucleus as an inescapable box of size
10−15 m (typical for atomic nuclei). Give an estimate of how much energy
we would need to move a proton in Helium up to the next energy level.

Solution:
From our previous example we know that the amount of energy to go from
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the ground state to the second state is

∆E1→2 = 3
h2

8mL2

Putting in numbers we get

∆E1→2 = 3
(6.626× 10−34 J s)2

(8)(1.67× 10−27 kg)(10−15 m)2
= 9.9× 10−11 J ≈ 6× 108 eV

How did we know the proton would start in the ground state? We didn’t!
This is a rough estimate only, but it gives us some idea of the amount of
energy involved. To make a meaningful comparison, the amount of energy it
takes to break a chemical bond has a typical magnitude of 1 eV.

Simple harmonic oscillator

The next potential we will consider is the harmonic oscillator. A microscopic
particle that is constrained by a spring-like potential (for instance, the atom-
atom potential) will also have quantised energy levels. Although there are no
actual springs, we still introduce the idea of a spring constant in describing
the potential energy:

PE =
1

2
kspringx

2

As we learnt in Physics 7B, a mass on a spring with spring constant kspring

would oscillate with a frequency f given by

f =
1

2π

√
kspring

m
.

Recall that this frequency is independent of the amplitude of the oscillation.

For this potential, the energy levels are equally spaced, and the spacing is
related to the frequency of the oscillation.

En = KE + PEspring

=

(
n− 1

2

)
hf ; n = 1, 2, 3, 4, 5, ...

=

(
n− 1

2

)
h

2π

√
kspring

m

As before, n is a positive integer, and h is Planck’s constant. Because n is
a positive integer we see that it is not possible for a particle to be at rest in
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a mass-spring system. The potential energy in the atom-atom potential is
similar to the potential energy for mass-spring systems – our atoms are oscil-
lating even at 0 K! This energy is not particularly useful because we cannot
make it do anything; their are no energy levels with less energy available to
the mass so we cannot transfer this energy to another system.

Test yourself:

A friend of yours points out that a mass-spring in the lab would also have
quantised energies due to this formula. Because the energy depends on am-
plitude, this would mean that you are only allowed certain amplitudes. Yet
in the lab, it seems that you can set the amplitude to an value you want.
How do you resolve this discrepancy? (Hint: you will want to consider the
numerical value of h).

The quantisation of energy also helps us understand the freezing of vibra-
tional modes that we learnt about in Physics 7A. Let us consider a diatomic
molecule that would vibrate at a frequency f . In Physics 7A we learned the
“typical” amount of thermal energy available per mode is 1

2
kBT , where kB is

Boltzmann’s constant, 1.38×10−23 J/K, and T is the temperature in Kelvin.
To get an atom to vibrate we need to activate 2 modes – one potential and
one kinetic. Therefore to start a vibration the amount of energy we need is
around kBT . The amount of energy that would need to be transferred to an
atom to get it to the next state is ∆E = hf , as we will show in Section 10-1,
ex. #4. If the thermal energy kBT available is less than hf , the diatomic
molecule does not have enough energy to make it go up an energy level and it
is stuck. We say the vibrational modes are frozen out because we cannot put
any energy into that mode. When the amount of thermal energy available
per mode (1

2
kBT ) available per mode becomes higher than the energy gap

hf between energy levels, then we can transfer energy into the vibrational
energy of the atoms, and we say the vibrational mode has been activiated.
The thermal energy per mode is controlled by the value of temperature T .

Test yourself:

Oxygen gas O2 has a vibrational frequency of 5× 1013 Hz. At roughly what
temperature does the vibrational mode become activated?

It is not surprising that even among systems that can be modeled as simple
harmonic oscillators there are some variations. Classically, we know that how
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stiff or loose a spring is will affect the motion. Quantum mechanically, we
find the same thing.

Example #4:
Compare the energy spectra of a vibrating molecule with a strong bond to
a weak bond, assuming the masses in each case are the same.

Solution:
As the masses are the same, the strength of the bond is the only parameter
affecting the the energy spectra. The bond that is stronger has a bigger
kspring, which results in a higher frequency. The energy of the ground state
is Eground = 1

2
hf , so the molecule with higher frequency has a higher ground

state energy. We will keep this in mind when we draw the energy levels.

The energy levels of a harmonic oscillator are evenly spaced, meaning that
the energy required to transition from one level to the next is the same
regardless of what level you’re on. We can find this spacing by subtracting
the nth energy from the (n+ 1)th energy:

∆E =

(
(n+ 1)− 1

2

)
hf −

(
n− 1

2

)
hf

=

(
n+

1

2

)
hf −

(
n− 1

2

)
hf

= hf

The spacing of the levels is proportional to the frequency, so the molecule
with a higher kspring has energy levels spaced further apart. We can use
the information about ground state energies and energy spacing to show the
energy levels:

E E

E=0 E=0

}
}

}

E1

E2

E3

E4

E5

E6

E1

E2

E3

E4

E5

}
}
} hf
hf

hf

hf

hf

hf
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The diagram above shows the energy levels of the weaker bond (left) com-
pared to the stronger bond (right). Recall that E1 is called the ground state
energy, and note that the molecule with higher frequency vibrations has a
higher ground state energy. The energy levels for the higher frequency vi-
brations are also spaced further apart.

The example above compares the energy levels for low frequency oscilla-
tions to those for high frequency oscillations. Because we know the potential
energy determines the energy spacing, it is worth examining the differences
in the potential energies for the two systems. From earlier courses, we know
the potential energy in a mass-spring system is PEspring = 1

2
kspringx

2. Thus,
having a higher kspring also changes shape in that the stronger spring has a
steeper potential (see below).

-100-100

PE PE

x xa) Low k b) High k

Notice that the flatter potential has energy levels that are more closely
spaced. This is similar to the earlier finding that the wider infinite well
has closer energies.

Energy is quantised for a diatomic molecule, and diatomic molecules can
only emit or absorb quantized amounts of energy (in the form of a photon
or heat). Remember that we are treating the atoms themselves as our mi-
croscopic particle; additionally there are electrons in the atoms themselves
that also have quantised energy levels. Make sure you understand that the
quantized energy levels for the electrons in the atoms are separate and dis-
tinct from the quantised molecules for the atoms undergoing simple harmonic
motion.
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E1

E2

E3
E4

ground 
state

Figure 10-1.2: The spectrum for hydrogen. There are different bound ener-
gies (shown as the thick vertical lines) that get closer together as the energy
gets higher. Once the electron is free from the atom (E > 0) the energy can
be any positive value, represented by the shaded block.

Single electron in an atom

The final potential we will discuss here is an electron bound to an orbit
around a nucleus. The total energy levels are quantized in terms of n as
such:

En, total = KE + PEelectric

= − 1

n2

(
2πkeZe

2

h

)2
me

2
=
E1

n2
; n = 1, 2, 3, 4, 5, . . . (10-1.1)

where n is any non-zero integer; ke is the electrostatic constant (9.0×109 Nm2

C2 );
Z is the number of protons in the nucleus; e is the charge of the electron; h is
Planck’s constant; and me is the mass of the electron. The energy levels En

can be rewritten in terms of the ground state energy E1 as En = E1

n2 . Writing
out the first few energy levels explicitly

En = E1,
1

4
E1,

1

9
E1, ...

Plugging in the values of the constants in equation 10-1.1, we find that E1 =
(−2.18 × 10−18 J)Z2 = (−13.6 eV)Z2. The most relevant example is the
hydrogen atom (Z = 1), as this is the only atom that typically has only one
electron. The energy levels are represented in figure 10-1.2
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Note that all the allowed energy levels for the electron in a hydrogen atom
are negative. This comes about because the potential energy of an electron
bound to a hydrogen atom is chosen to be negative (revisit §9-2-4 if you
have forgotten). The ground state energy level (n = 1) is the most bound
state. Adding (allowed) energy to the electron will increase n, making its
total energy less negative, or even zero (as n approaches ∞). At this point,
the electron will be unbound and free, and then will be allowed to have any
(positive) value of energy. Because we cannot draw a line for every positive
energy, we have simply added a shaded region to the spectrum. Also note
that the energy levels get closer and closer together for larger n.

There are many transitions that occur that allow the electron to remain
bound to the nucleus. Each allowed transition requires a certain amount of
energy input (or releases a certain specific amount of energy, if the electron
loses energy). These interactions typically occur by the atom absorbing (or
emitting) individual photons. Because only certain energies can be absorbed
(emitted), and the photon’s energy depends on frequency, only certain fre-
quencies of light will be absorbed (emitted).

Example #5:
Light including the infrared, visible, and ultraviolet hits a bunch of hydrogen
atoms at nearly 0K. The light is detected after hitting the atoms. a)
Describe the light. Considering only transitions that allow the electron to
remain bound the the nucleus, b) determine the longest possible wavelength
absorbed, c) determine the shortest possible wavelength that could be
absorbed, and d) determine if either of the photons in (b) or (c) is in the
visible range.

Solution:
a) The light incident on the hydrogen atoms includes a full range of frequen-
cies, and thus a full range of energies. When the light hits the hydrogen
atoms, some of the photons with exactly the right energy will excite the
electrons into higher energy levels. The other photons will pass through
unimpeded. Thus, the light reaching the detector will no longer contain the
full range of frequencies, but will have “narrow bands” missing corresponding
to transition energies in the hydrogen atom, and most of the light at high
frequencies absorbed by ionizing atoms. The dark bands could be observed
by passing the light through a prism to separate the light by frequency.
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b) Longer wavelengths of light have lower frequencies. The longest wave-
length absorbed will correspond to the lowest frequencies, and thus the lowest
energy transition. We start with atoms that are very, very cold, so we can
assume that all of the electrons are initial in the ground state. The lowest
energy transition is from the ground state (n=1) to the n=2 level. For the
electron to make this transition, it must absorb the energy of a photon with
the correct amount of energy.

∆Ephoton + ∆Eelectron = 0

Ephoton, final − Ephoton, initial = −(Eelectron, final − Eelectron, initial)

0− Ephoton, initial = −(
−13.6 eV

22
− (
−13.6 eV

12
))

Ephoton, initial = 10.2 eV

The question asks us to determine the wavelength of the absorbed light,
so we must determine the wavelength of light corresponding to 10.2 eV of
energy. The light is in vacuum (we are dealing with subatomic scales here,
so “medium” does not make sense) so vlight = c.

Ephoton, initial = 10.2 eV

hf = 10.2 eV

hc

λ
= (10.2 eV)

(6.626× 10−34 Js)(3× 108 m/s)

λ
= (10.2 eV)

1.6× 10−19 J

1 eV

The longest absorved wavelength is 1.22× 10−7 m or 122 nm.

The Hydrogen atoms in the problem were at nearly absolute zero, so the
electrons were all in the ground state. This is not always the case. We
could have an electron start in the n=2 state and transition to the n=3
state. An electron undergoing this n=2 to n=3 transition would have a
longer wavelength than the 122 nm found above (calculate it and check!).
In fact, the energy levels in a hydrogen atom are very closely packed near
zero. There are infinitely many energies available just below zero energy,
at large n, so the gap between energies can be infinitely small. Note that
realistically it is unlikely that there are lots of electrons with initial states
with very high n, because these electrons would be easily dissociated from
their nuclei. However, for excited electrons in atoms, there is no such thing
as the smallest possible wavelength absorbed.
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E

E=0

E1

E2

E3
E4
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state

Transition with 
most energy 
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c) Shorter wavelengths of light correspond to higher frequencies and higher
energies. The highest energy transition available is from n = 1 to very large
n, just before the electron is freed from the atom. The initial state is the
ground state, with energy−13.6 eV, and the final state approaches 0 eV. The
electron gains 13.6 eV of energy so the photon must lose the same amount
of energy. Mathematically,

∆Ephoton + ∆Eelectron = 0

Ephoton, final − Ephoton, initial = −(Eelectron, final − Eelectron, initial)

0− Ephoton, initial = −(0 eV− (−13.6 eV))

Ephoton, initial = 13.6 eV

As in part (b), we must determine the wavelength of light corresponding to
13.6 eV of energy. Recalling vlight = c.

Ephoton, initial = 13.6 eV

hf = 13.6 eV

hc

λ
= (13.6 eV)

(6.626× 10−34 Js)(3× 108 m/s)

λ
= (13.6 eV)

1.6× 10−19 J

1 eV

The shortest absorbed wavelength is 9.14× 10−8 m or 91.4 nm.

d) There is no longest wavelength (part b), so the wavelength could get
arbitrarily large and certainly longer than any in the visible range. The
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smallest wavelengths human eyes can see are around 400nm, so the shortest
absorbed wavelength is also outside the visible range. If we convert the
wavelengths back to frequencies, we find the lower frequency (c) is 2.46 ×
1015 Hz and the higher (d) is 3.28× 1015 Hz. Referring to §9-4-2 we find that
both of these photons are in the ultraviolet range.

The previous example explores the absorption spectrum of hydrogen. We
could also explore the emission spectrum. If we heat up a tube of hydrogen
case, many of the electrons are excited out of their ground states and into
higher energy states. As these electrons fall to lower energy levels, photons
are emitted to conserve energy. The emission spectrum of hydrogen can
be directly calculated from the energy levels. The emission spectrum for
other elements are more complicated to calculate because other elements
have multiple electrons that all interact with one another, in addition to
the interaction with the nucleus. Because each atom has a different energy
spectrum, the emission spectrum of each element is unique. The uniqueness
of the spectra can be exploited in spectroscopy by identifying unknown atoms
and molecules by the energies of photons that their elements emit or absorb.

Burning samples of chemicals is another way to excite electrons. We might
expect to see some correlation between the emission spectrum and the color
of chemical fires. In practice, we do indeed see this similarity. The color of
burning elements is due to the emitted photons. To take a specific example,
burning sodium produces a bright yellow flame. We can understand this by
studying the emission spectrum of sodium, which includes many photons but
only two in the visible range (at least at low pressures). Both of the visible
photons have wavelengths of about 590 nm which corresponds to yellow light.
The color of the flame is yellow because of these yellow spectral lines. You
may be familiar with the color of excited sodium from sodium vapor street
lamps, which also emit yellow light!

10-1-2-2 Photons

Previously, we devoted all of 9-4 to understanding the phenomena of light
waves. To review briefly, we found that light behaves just like other waves
in a variety of circumstances, such as when sent through small thin slits as
in §8-2-6. Prior to the two-slit experiments, physicists had been uncertain
about the nature of light. Prominent physicists, including Sir Isaac Newton,
strongly believed that light was more like a particle than a wave. The two-
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slit interference patterns of light could be understood so well with the wave
model that for awhile the subject was laid to rest.

In the early 20th century, several circumstances involving light brought
the wave model back into consideration. Eventually, enough evidence ac-
cumulated to conclude that light behaves in ways that can be explained by
a particle model, but cannot be explained by a wave model. Presently, we
must hold in our minds both the wave model of light and the particle model
of light. In some circumstances, the behavior follows the wave model, but in
other circumstances, it follows the particle model.

What is the particle model?

Just as energy is quantised, so is light. The individual quanta of light are
called “photons.” The photons can be thought of as packets, bundles, or
particles of light. From our earlier discussion we know that the energy of a
photon is proportional to the frequency f of the light Ephoton = hf , where h
is Planck’s constant.

To consider the implications of the particle model, it is helpful to think
about monochromatic light, meaning light with all the same frequency, like
that produced by a laser. We consider two properties of the light–it’s intensity
(i.e. brightness) and the amount of energy the light is able to transfer into
another system, like an electron orbiting a nucleus.

First, compare two beams of light with equal brightness but different fre-
quencies. From our relationship Ephoton = hf we see the beam with the
higher frequency has higher energy photons. Thus, the high frequency beam
is capable of transferring larger amounts energy into another system. Be-
cause the intensity refers to the total energy in the beam, the intensity being
the same tells us that the beam with the higher frequency has fewer pho-
tons. In the wave model, we would have said that since both beams have the
same intensity, they must have the same amplitude. The energy in a wave
is related to the amplitude, so both light beams must have equal ability to
transfer energy. Clearly, the two models lead to different hypotheses.

Next, consider the action of increasing the beam’s brightness. In the par-
ticle model, we say that we have added more photons to the beam, but that
each particular photon still only carries a certain amount of energy. Using
the particle model, we conclude that the brightness of the beam does not
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influence how much energy any particular photon can transfer to another
system, though with more intensity we have more photons available to make
the transfer. In the wave model, we would conclude that the greater inten-
sity wave has the ability to transfer larger amounts of energy into another
system. Again, the models make different predictions.

At this point, we have two different models for light. We know that the
wave model is quite able to predict the behavior of light in two slit inter-
ference, where the particle model can not. So why learn about the particle
model? The photoelectric effect is an experiment that provides strong experi-
mental evidence of the particle model of light. In fact, it was the photoelectric
effect that first led Albert Einstein to develop the particle model of light.

The photoelectric effect

In the photoelectric effect, a beam of incoming light shines on a metallic
surface. When the beam hits the metal, it sometimes ejects electrons from
the metal and sends the electrons down a tube to a collector. To do so, the
beam must have sufficient energy to break the electrons’ bonds to the metal
and provide the electrons with sufficient kinetic energy to reach the collector.
Reaching the collector requires a certain amount of minimum kinetic energy
at emission, because an electric field exists between the collector and the
emitter that acts to slow down the electrons on their path. See the figure
below.

For now, focus your attention solely on the grayed tube at the top and ig-
nore the portions of the circuit including the battery and ammeter. The
photoelectric experiment allows us to test the wave model against the par-
ticle model, for this particular setup. As an experimenter, we have control
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over both the intensity of the light and the color of the light. We can inde-
pendently vary one variable or the other, and note the effect, enabling us to
determine the appropriate model for this system.

So what might we see? The photoelectric effect can be explained using
the conservation of energy. Light brings in a certain amount of energy. If
the energy is sufficiently high, it frees an electron from the metal. Different
metals bind the electrons with different amounts of energy, called the work
function, and given the symbol W0. If the incident light is less than the work
function, the electrons remain attached to the plate.

Suppose the incident light has sufficient energy to free the electron from
the plate. The electron emerges with a kinetic energy of at least 0 J, and
possibly more. The energy of the incident light is split in some fashion
between breaking the electrons bond to the metal and providing the electron
with kinetic energy (Elight = W0 +KEelectron). Higher energy light results in
faster moving electrons.

Next, the electron travels from the emitter towards the collector. In this
region, an electric field points from the emitter toward the collector. The
electric force on the electron slows it down as it travels from the emitter
to the collector. Thinking about energy again, the electron gains potential
energy as it loses kinetic energy. As an experimenter, we we control the
strength of the electric field, and thus the amount of potential energy the
particle gains as it traverses the tube. We can measure the kinetic energy
the electron had just after it was emitted from the first plate if we exactly
stop the particle as it reaches the collector (this means we transfer exactly all
of the electron’s kinetic energy into potential energy). The potential required
to do this is called the stopping potential. If we have a situation where many
electrons reach the collector, we can slowly increase the voltage between the
plates until we just reach the stopping potential.

When this experiment is run, we find the following:

• Different beam intensities have no effect on electron speed.

• Higher intensity beams free more electrons.

• Higher frequency beams result in electrons with higher speeds.

• Different frequencies have no effect on the number of freed electrons,
provided the frequency is high enough that some electrons are freed.
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These results all support the particle model of light. The intensity determines
how many electrons are freed, because beams with higher intensities contain
more photons. Intensity does not determine the speed of freed electrons
because the energy of each photon in the light beam is determined by the
frequency of the light, and changing the intensity does not change the energy
of the beam.

The mathematics of the photoelectric effect

The previous section contains all of the concepts important to understanding
the quantization of light. We now explore the mathematics to quantify these
concepts. As you read, be sure to connect the equations to the concepts
presented above. Our goal is to determine the energy of the incident light.

There are two main processes involved in the photoelectric effect. The
first involves the light transferring energy to the electron, freeing it from
the metal and giving it kinetic energy. Next, the electron travels down the
tube, gaining potential energy and losing kinetic energy. As stated above,
we adjust the voltage between the plates until the electron just barely stops
short of the collector.

First, we will look at the second process, of slowing the electron down as
it traverses the tube:

∆PE + ∆KE = qVfinal − qVinitial +
1

2
mv2

final −
1

2
mv2

initial = 0

We know that the final speed of the electrons is zero, since they just stop.
Also, Vfinal − Vinitial = ∆V is defined as Vstopping.We can rewrite our above
equation as

qVstopping +KEinitial = 0

⇒ KEinitial = −qVstopping

We know the charge of the electron (q = −1.6×10−19 C) and the stopping
potential, so we have determined the kinetic energy of the electrons just after
they emerge from the plate. Our goal is to relate this mathematically to the
energy of the incident light. We can complete our task by recalling that the
incident energy is transfered into breaking the electron off the metal with the
remainder going into the electron’s kinetic energy:

Elight = W0 +KEinitial

KEinitial = Elight −W0
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We have called this kinetic energy “initial” to remind the reader that it is the
kinetic energy that the electron has when it initially begins its trip toward
the collector. Finally, we have found that:

−qVstopping = Elight −W0

Elight = W0 − qVstopping

If we find a way to adjust the energy of the light, then we will need to adjust
the stopping potential, too, provided that we conduct our experiment with
the same metal each time. If we do not need to adjust the potential, then
we have not adjusted the energy of the light.

This setup is useful because the wave model and particle model hypothesize
different ways of adjusting the energy of the light. We can try each method
and note whether or not it resulted in a different electron kinetic energy (and
thus different required stopping potential) to distinguish between the meth-
ods. Experimentally, we find the need that adjusting the frequency of the
incident light requires us to adjust the stopping potential. This is the ex-
perimental evidence that the particle model accurately describes light in the
photoelectric effect. Thus, Elight = Ephoton = hf . Adding this relationship
to our previous work,

hf = W0 − qVstopping > W0 (Recall q < 0)

With this relationship, we could determine an experimental value for h, de-
termine the work function of different medals, and more.

Which model is “correct?”

At this point, you might wonder which model is the “correct” model of light.
The answer is “neither”. In more sophisticated treatments we deal with light
as a “quantum model” which incorporates all the examples we have discussed
so far. We should refrain from saying that light is really this “quantum stuff”
as future experiments may require us to replace this model with something
else.

If neither model of light is correct, why do we teach them? Ultimately the
full “quantum model” is just too difficult, and we can answer many questions
by using the particle model or the wave model of light. Both of these simpler
models correctly capture aspects of light’s behaviour. Many books perpetrate
confusion by claiming that light is somehow “both a particle and a wave”,
giving philosophers a lifetime of work. Many physicists are also guilty of
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perpetrating this myth. We have a good “quantum model” for light (and
electrons, and even whole atoms) – and in some situations we can simplify
and use the wave model, while in others we can use the particle model.
In other situations the “quantum model” does not fit into either a wave
or particle description. Stuff on a microscopic scale behaves differently to
our expectations, the fact that we cannot shoehorn it into our preconcieved
notions does not mean quantum mechanics is contradictory. 5 It does mean
that the microscopic world is highly counter-intuitive.

Because the wave-particle “duality” or “contradiction” is bought up so of-
ten, it bears repeating:

Arguments about whether light is really a particle or a wave are
a waste of oxygen, or worse yet, trees.6 People making these
statements are unaware of the concept of modelling and making
approximations, and you should be hesitant to accept their advice
about physics.

10-1-3 What are matter waves?*

10-1-3-1 Two-slit interference

Our definition for a wave has been too stringent – in unit 8 we referred to
(material) waves as being oscillations of a medium about its equilibrium po-
sition in time and space. When we discussed light waves we no longer had an
obvious medium, in fact light can travel through vacuum. The fact that light
can reach us from the sun is a daily reminder of this fact. We still choose
to refer to light as a wave because it obeys the principle of superposition.
Superposition gives us constructive and destructive interference, and a dra-
matic example of this is two slit interference which we have seen in section
8-2-6. Light going through each slit superposes to give rise to the bright and
dark bands as shown in figure 10-1.3 (b). Particles, on the other hand, can
only go through one slit at a time and cannot interfere. The pattern particles
would make is shown in figure 10-1.3 (a). To compare the two we consider
the “number of marbles in a bin” to be analogous to the brightness of the
light.

5There are other questions related to the probabilistic interpretation of quantum me-
chanics, and whether or not that ultimately “makes sense”. Most physicists are convinced
it does.

6We are completely aware of the irony.
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(a) Marbles through two-slits

wavefrontλ

Film

(b) Waves through two-slits

Figure 10-1.3: We see that the particles (such as marbles) produce a different
pattern than waves (such as waves) would. For the marbles, we replace the
idea of “brightness” with the number of marbles in a given bin.

What would electrons do if they were also passed through two slits? Be-
cause we are used to thinking of electrons as little balls, we may expect to
get a “particle-like” interference pattern:

Film

Electrons

When this experiment is actually performed, we get quite an unexpected
result – the electrons form an interference pattern similar to waves:

Film

In fact, the interference pattern created by the electrons is identical to one
created by light with the same phase difference between the two slits and a
wavelength

λ =
h

p
≈ h

mv
(if v � c).

This is called the de Broglie wavelength. It is the same formula we learned for
photons, except there we wanted the momentum: p = h/λ. Just as light can
exhibit particle-like properties (such as in the photoelectric effect), matter
can exhibit wave like effects (such as interference patterns).
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10-1-3-2 Single electron and single photon interference

We learned when studying waves the reason that the interference pattern
occurs is because we have a superposition of the wave that goes through
each slit. What would be the pattern we would expect if we sent through
one electron at a time, and kept track of where they land? Or, for that
matter, one photon at a time? We will use a film to keep track of where
the photons land, and let many photons through our slits one at a time. As
both the photon and the electron are supposed to be a single indivisible unit,
and should go through one slit or another. We may expect to recover the
“marble-like” interference pattern again. For concreteness, let us discuss the
experiment for photons – exactly the same analysis works for electrons as
well. We show the film after sending through a single photon (left diagram)
and then four photons.

Film Film

So far so good. As we continue sending photons through, we see that the
pattern we build up was not just the “marble” pattern shown in figure 10-1.3
(a). Instead the pattern that builds up resembles that of a wave:

Film Film

Somehow the individual photons going through the slit have managed to go
through both slits and produce an interference pattern. The light is still
“particle-like” in the sense that each photon makes only one bright spot on
the film (as in the photoelectric effect) but produces a pattern that we expect
waves to make.

It seems like the particle (be it photon or electron) is travelling through
both slits and interfering with itself! Because photons and electrons are
supposed to be indivisible, this seems like a ridiculous statement. To get
further insight on this, let us set up a detector by one of the slits that tells
us if the photon goes through that slit. That way we should be able to
eliminate the possibility that the photon is “interfering with itself”. If we
try this experiment with the detector, the result we obtain on our film is

Film

Detector
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Now we can tell which photon went through which slit, but we get the in-
terference pattern we expect from particles. By switching the detector off
again, we recover the interference pattern for waves. Another way of putting
the same thing is that when we tried to probe the particle nature of the light
(e.g. which slit did it go through) we ended up with the pattern we expect
marbles to make. When we ignored which slit it went through, somehow
the photon went through both and interfered with itself. In either case, how
the light acts depends on what we are measuring! We can no longer simply
ignore the influence of our measuring apparatus on the system, a subject we
will address again in section 10-1-3-6.

There is another fundamental issue which has not been addressed: what
distinguished different photons and made one make one spot on the film, and
another photon make a different spot? Nothing distinguishes these different
photons. Unlike the marbles that were shown in figure 10-1.3 (a) where
marbles starting in different places ended in different places these photons
are identical.

Put in a slightly different way, given a photon we cannot predict where it
will land. It is much more likely to end up in a constructive interference fringe
(after all, the reason they are “bright” is that many photons go there) and has
no probability of ending up where there is complete destructive interference.
But we have given up deterministic physics – we must now settle with being
able to calculate probabilities instead.

10-1-3-3 Interpreting the wave

We have stated that this “matter wave” will give rise to an interference
pattern. But what else does the wave tell us? The interference pattern gives
us a clue: the “brighter” the spot on the screen (for the full interference
pattern) the more likely it had to be for the particle to land there. We
generalise this to

P

(
particle in region around x± ∆x

2

)
∝energy dumped in that region

of screen by resulting fringes

The energy dumped into the screen for light is I ∆x. This is true provided
∆x is small, so that the intensity is roughly constant. If we want to know
about a large region we should use an integral instead. The intensity I is
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proportional to the square of the field. We then propose that we will get the
right answer if:

P

(
particle in region around x± ∆x

2

)
∝ |ψ(x, t)|2 ∆x

where ψ(x, t) is the wave function for this matter wave. This is not a deriva-
tion, as quantum mechanics is a completely new phenomena that cannot be
derived from our discussion of electromagnetism or Newton’s laws. Instead
it is an argument to make the choice of |ψ|2 seem less ad hoc. This choice
must be (and has been) verified by experiment to be taken seriously.

A summary of the main idea above is that the results of experiments are
now only determined up to probabilities. If we plot |ψ(x, t)|2 against x, the
probability of a particle being in a particular region is proportional to the
area of that region. An example should clarify the main points.

Example #6:
Below is the “matter wave” for the electron. Which location or locations
is the electron most likely to be found? Which location or locations is the
electron least likely to be found?

ψ(x, t = 0)

x

Solution:
We first want to turn this graph into a probability distribution, so we take
the square of this graph. This gives us the graph below:
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|ψ(x, t = 0)|2

x

Now we need to figure out what the question is actually asking. This graph
peaks at x = 0. Now the probability that the particle is at exactly x = 0 is
zero – the area under this point is tall but has basically zero width. However,
the probability that the particle is around x = 0 is quite a bit higher that
around any other point. For example, compare the area around x = 0 to the
area around x = 2 – we see the particle is almost twice as likely to be close
to x = 0, and certainly more likely than being around x = 3.

|ψ(x, t = 0)|2

x

Probability of being 
"close" to x=0 is

shaded area

Probability of being 
"close" to x=2 is

shaded area

However, it is true that it is more likely for the particle to be between x = 0.5
and x = 2.5 than “near” x = 0, as there is more area under the curve.
Taking this to the extreme, the probability must be one that the particle is
somewhere, so the region with the most probability is the one that extends
from −∞ to ∞!

The question was asking which location was the particle most likely to be
found, not which region was the most likely for the particle to be found. If
we look in a tiny region around x = 0 it has the most area of any other
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“tiny region”, so we call x = 0 the most likely location for the particle.
So while strictly the probability of being at any particular location is zero,
the statement “the particle is most likely at x = 0” is really a convenient
shorthand for “the particle is more likely to be very close to x = 0 than
be very close to any other single point”. It is admittedly a sloppy use of
language, but provided you know what is meant by such statements it will
not lead you astray. The actual numerical value for the probability depends
on how large we make this “tiny region”.

The least likely locations for the particle is whenever the probability wave
goes through zero. These locations are x = ±0.5, x = ±1.5, x = ±2.5 and
pretty much anything with |x| > 3.5.

10-1-3-4 Matter waves: the trouble with frequency
and wave speed

Matter waves are analogous to the other waves we have seen so far in this
course; the major difference is that matter waves have no polarisation. The
oscillations in a probability wave do not have a sensible interpretation as
being in a direction so the concepts of longitudinal or transverse polarisations
simply don’t apply.

More problematic is the issue of frequency and wave speed. When we
discussed waves in unit 8 we considered the frequency f and related it to
the wave speed by vwave = λf . To carry on the analogy with light, we may
think that for a particle Eparticle = hf . So far all of this is true, but we have
glossed over one important detail: we don’t know vwave for the matter wave!
In particular, it is not the same as the speed of the particle!

vwave 6= vparticle

For light vwave = vphoton = c. For matter waves, the velocity is much more
complicated and at this level you should avoid thinking about the frequency
of matter waves7. Instead, we shall mean vparticle when we write v, and simply
restrict our attention to the wavelength λ = h/p.

7Technical aside: you may wonder how the velocity of a particle and the velocity of its
wave can ever be different. Waves have many velocities, and particles travel at the group
velocity of matter waves. The velocity vwave is the phase velocity and is unobservable. For
light in vacuum these velocities are both c, so no confusion can result. (Phase velocity
and group velocity are given so you can read up on this if you are interested, they are not
important for this course.)
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When we looked at a particle in a harmonic oscillator, we will saw f in the
formula for the energy levels. This f does not correspond to the frequency
of the matter wave fwave, but refers to the frequency of the particle fparticle

as it bounces back and forth. Because both the particle and the wave are
oscillating this can cause some confusion. In this class the details are far
too technical, and we will never look at the frequency of the matter wave.
Whenever we write v or f in this section, we are always referring to vparticle

or fparticle respectively.

10-1-3-5 Using matter waves to find the energies: an
example

We have simply given you the formula for the allowed energy levels En in the
infinite well, the simple harmonic oscillator and the hydrogen atom. Now we
will show you how to actually find the energy levels in the case of the infinite
square well because it is the simplest to do, and indicate why the other cases
are slightly harder. If you need a reminder on the infinite square well, flip
back to page 209.

Because the potential energy inside the well is zero, the total energy of the
particle E is simply equal to the kinetic energy of the particle:

E = KE + 0 =
1

2
mv2

Because the total energy is not changing, the speed cannot change, and the
magnitude of the momentum (|p| = m|v|) cannot change either. Because the
momentum and wavelength are related by

λ =
h

p
=

h

mv

we see that the matter wave has the same wavelength throughout the well.

We also know that the particle cannot escape the box, so there is zero
probability the particle is located outside the box. This tells us that the
matter wave had better be zero outside the box. Because the matter wave
should not undergo sudden jumps, this restricts which wavelengths we are
allowed. Here are three examples of matter waves that have zero amplitude
outside the box, and constant wavelength inside:
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Distance
Box length L

Inaccessible
regardless
of energy

Inaccessible
regardless
of energy

λ

2
= L

Distance

Inaccessible
regardless
of energy

Inaccessible
regardless
of energy

3λ

4
= L

Distance

Inaccessible
regardless
of energy

Inaccessible
regardless
of energy

λ = L

Notice that the first and last example work well, but in the second example
the matter wave “jumps”. The wavelength corresponding to this second
example is simply not allowed in this system. The only wavelengths that are
allowed are those that go to zero on the two walls. But this is exactly the
same as standing waves with both of their ends fixed, which we discussed in
§8-2-5. The allowed wavelengths are then

λn =
2L

n
, n = 1, 2, 3, . . .

where n is the number of anti-nodes in the wave.

Because we know the momentum is related to the wavelength, restricting
the wavelengths to certain values also restricts the allowed values of momen-
tum:

pn =
h

λn

= n
h

2L
We know that p = mv, and because the mass does not change we see that
quantising momentum aslo has the effect of quantising the velocities:

vn =
pn

m
= n

h

2Lm
.

Finally, because we are only allowed certain values of the velocity we can
only have certain values for the kinetic energy:

En =
1

2
mv2

n = n2 h2

8mL2
= n1E1

which is exactly the formula we found before. But now we have some idea
of what n is and how it got there: n is counting the number of anti-nodes in
our matter wave!

Let us summarise the process:

Standing probability waves =⇒ quantized λ

Quantized λ =⇒ quantized p

Quantized p =⇒ quantized v

Quantized v =⇒ quantized KE
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Other potentials are more difficult to calculate exactly. One reason for this
is the potential energy keeps changing, so the kinetic energy (and therefore
wavelength) keep changing. However, with some more mathematical and
physical consideration, it is possible to calculate the spectrum En of other
potentials.

10-1-3-6 Uncertainty principle

The idea that a measurement inevitably affects the particle being observed
has already been introduced when looking at the two slit experiment. In
that situation we discovered that trying to measure which path the particle
took resulted in the interference pattern disappearing, and the “marble-like”
interference pattern reappearing.

Measurement affects physical systems in more general ways. One very
famous example is the Heisenberg uncertainty principle which states that
you cannot know both the position and momentum of particle arbitrarily
well. If you know the particle is in a region of size σx, and you know the
momentum within σp then the following inequality must be satisfied8

σx σp ≥
h

4π
.

The consequence of this is as we try and get a more accurate measurement of
position (σx → 0) the information we have about the momentum gets worse
(σp ≥ h/(4πσx)).

One way of seeing why something like this should be true is to consider
the actual act of measuring the position of a particle. One way of doing this
would be to shine light on it, and see where the goes (i.e. trace back the rays
as we did for lenses). This is similar to how we see objects in everyday life:

Particle

Observer

Incident light

Reflected 
light

Particle measured
somewhere in 

this region

Observer

σx ∼ λ

8Technically σx and σp are the standard deviations in measurements of the particle’s
position and momentum respectively, rather than the region we “absolutely know” they
must be in.
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We cannot determine the position of the particle to a size smaller than the
wavelength of light we use, so the error involved in the measurement of
the particles position is σx ≈ λ. As we use light of shorter and shorter
wavelengths we get better accuracy on the particle’s position.

As the light has momentum, it will “kick” the particle as it changes direc-
tion after interacting with the particle:

Particle

Observer

Incident light

Reflected 
light

Particle measured
somewhere in 

this region

Observer

σx ∼ λ

pparticle

Because momentum is conserved, the amount of momentum transferred to
the particle depends on how much the light was deflected by. If the light
is only slightly deflected, the particle will still have (approximately) zero
momentum. If the light bounces directly back, the momentum of the particle
must be twice the initial momentum of the photon 2h/λ. The uncertainty
in the final momentum of the particle is roughly σp ∼ 1

2
(pmax − pmin) = h/λ.

Putting these together we have

σx σp ≈ (λ)

(
h

λ

)
= h (10-1.2)

We have been rough in our estimates, but this shows us that by using light of a
long wavelength we can measure momentum well (plight ≈ 0) but know almost
nothing about where the particle is or sacrifice accuracy in our knowledge of
momentum for more accuracy in position.

An obvious objection to the above argument is that there may be other
ways of measuring position and momentum that do not involve light, and that
all that has been demonstrated is this particular method cannot accurately
measure both simultaneously. This is a very valid objection, but it turns out
that any measuring procedure will disturb the system in such a way that you
cannot simultaneously determine the position and momentum completely.
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Hidden varaibles?
A more fundamental flaw with this derivation is that it pretends the particle is
really a “marble-like” particle, and the uncertainty in position or momentum
comes about solely from our lack of ability to measure it. This is the idea
that there are things hidden away that we have not been clever enough to
measure, collectively called “hidden variables”.

Quantum mechanics actually makes a much stronger statement: the un-
certainty in measurements does not reflect our inability to make certain mea-
surements but rather the particle does not really have a particular position
or momentum until one makes a measurement. This may seem like a philo-
sophical distinction, how could one show that these quantum particles were
not really “marble-like” and that all the uncertainty came from our inabil-
ity to measure? On the other side if we cannot measure it, can we really
talk about it being true? One of the greatest triumphs is that quantum
mechanics is strange enough that there are experimental differences between
“hidden variables” where the uncertainties are just from bad measurements,
and quantum mechanics. In all the experimental tests the predictions of
quantum mechanics have been borne out.9

What is the take home message from this? The argument using light
to measure the position of a particle to demonstrate why the uncertainty
principle is true is one that appeals to our sense of how the world should
work at the level of tennis balls and things we are used to. However, it suffers
major logical flaws e.g. how are we sure this is the best measurement that can
be performed? Quantum mechanics makes a much more radical departure:
it claims that the world is not like tennis balls at all! In retrospect, it is
somewhat amusing that the tennis ball like argument above gets us so close
to the right answer!

10-1-4 Summary

We have seen that at the microscopic level the world is very different from
anything we are familiar with. Yet the world we are familiar with is built out
of this strange quantum world. Quantum mechanics brings three radically
different ideas to physics:

9These experiments are too subtle to discuss in this course, but if you are interested in
them look under Bell’s inequalities.



10-1-4. SUMMARY 237

1. Some continuous quantities are quantised
It is perhaps easiest to understand why this one is not noticeable in
everyday life, as the steps between allowed values are typically quite
small (c.f. water molecules vs. continuous water).

• Light could be described by “packets” of energy called photons.
The energy of a photon is E = hf , where h is a universal constant
known as Planck’s constant. A photon has momentum given by
p = E/c.

• The information needed to label a state are known as the quantum
numbers. In the examples above, n is a quantum number.

• In addition to the shell number n, electrons in atoms have three
additional quantum numbers, all of which are to do with angular
momentum.

– `: takes values between 0 and n−1. Labels how much angular
momentum the electron has going around the nucleus.

– mz which lies between −` and ` carries information about
how much angular momentum is in the z-direction.

– ms which takes two values. This is to do with the electron’s
internal spin.

• The Pauli exclusion principle forbids any two electrons from shar-
ing the same quantum state. Once accepted this principle tells
us why the electrons fill up the states of an atom, rather than
crowding into the low energy states. The distribution and range
of quantum numbers is largely responsible for the structure of the
periodic table.

2. The results of measurements are no longer deterministic, but instead
have different probabilities
For systems with large number of particles this becomes unimportant,
as the probability of being a long way from the mean value is small. The
source of the probability is not due to imperfect knowledge as it would
be for flipping a coin or roulette10, but is instead due to fundamental
randomness.

• Objects we normally consider to be particles have a wavelength
given by λ = h/p = h/(mv).

10See the book Bringing down the house about six M.I.T. students that measured the
velocity and position of a ball to win against the casino. In a quantum game, this sort of
cheating would be impossible.
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• The absolute square of the wavelength gives the probability den-
sity for the particle being observed at a particular location.

• Confining a particle to a small region leads to quantisation of
energy. We discussed the explicit allowed energy levels for three
different systems. For each of these systems n is a positive integer.

3. The act of measuring a system affects it in a substantial way.

In special circumstances we can get quantum mechanical affects at large
scales – the primary example is superconductivity .

Finally, we summarise the actual systems we explicitly gave the energy
levels for in the table below:

System Formula for energy levels
Particle of mass m in an (unescapable) box L En = n2E1 = n2h2/(8mL2)
Simple harmonic oscillator, classical frequency f En =

(
n− 1

2

)
hf

A single electron atom in an element with Z protons En = −Z2(2π)2mk2e4/(2h2)
= −Z2(13.6 eV)/n2



Appendix A: Physical constants
Memorizing these constants is not doing physics. They are provided for
your convenience, but we will give you values for constants on quizzes and
finals. You should memorize the SI unit conventions, and should know the
“approximate values”.

Fundamental constants
Quantity Symbol Value

Speed of light c 3.00× 108 m/s

Gravitational constant G 6.67× 10−11 Nm2/kg2

Planck’s constant h 6.63× 10−34 J s

4.14× 10−15 eV s

Coloumb’s constant k 9× 109 N m2/C2

Permeability of the vacuum µ0 4π × 10−7 N s2/C2

Avagadro’s number NA 6.023× 1023 atoms/mole

Boltzmann’s constant kB 1.38× 10−23 J/K

Stephan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Proton charge e 1.602× 10−19 C

Matter
Particle Mass Charge

Electron 9.11× 10−31 kg −1.60× 10−19 C

Proton 1.67× 10−27 kg 1.60× 10−19 C

Neutron 1.67× 10−27 kg 0 C

Approximate values
These figures give you a rough idea of how big various quan-
tites are, such as the well-depth of the Lennard-Jones poten-
tial. Exact values depend on the system being considered.

Quantity Approx. Value

Size of atom ∼ 10−10 m 1 Å

Well-depth 10−21 J 10−3 eV

Ionization energy 10−20 – 10−18 J 0.1 – 10 eV

Mass of an atom 10−27 – 10−25 kg 1 – 200 amu
Visible light :

frequency 6× 1014 Hz —

E 3× 10−19 J 2 eV
Tallest building 508 m
Height of Everest 8850 m
Radius of Earth 6380 m

Optics
Different colours have slightly different refractive indices.
This table has approximate values for the visible spectrum
(exact values will depend on the exact material and fre-
quency)

Material n = c/vmedium
Vacuum 1.0 (exact)
Air 1.0003
Water 1.33
Glass (crown) 1.50–1.62
Glass (flint) 1.57 – 1.75
Silicon 3.5
Germanium 4.0
Diamond 2.42
Eye 1.33
Eye lens 1.41

Solar system data
Body Mass Radius Distance Orbital Surface

from sun period temp (ave)

Sun 2×1030 kg 695000 km — — 6000 + 273 K

Mercury 3.3 ×1023 kg 2400 km 5.7× 106 km 88 days 179+273 K

Venus 4.9× 1024 kg 6050 km 1.1× 109 km 225 days 482+273 K

Earth 5.98× 1024 kg 6380 km 1.5× 109 km 365.25 days 15 + 273 K

Moon 7.3× 1022 kg 1737 km – 27.3 days -46 + 273 K

Mars 6.4× 1023 kg 3400 km 2.3× 109 km 687 days -63 + 273 K

Jupiter 1.9× 1027 kg 71500 km 7.8× 109 km 4332 days -121 + 273 K

Saturn 5.7× 1026 kg 60300 km 1.4× 1010 km 29.5 years -125 + 273 K

Uranus 8.7× 1025 kg 25600 km 2.9× 1010 km 84 years -193 + 273

Neptune 1.0× 1026 kg 24746 km 4.5× 1010 km 164.8 years -185 + 273 K
One day means 23.9345 hours. Years are all Earth years. Earth-Moon distance is 384000 km.

G = 6.67× 10−11 N m2 kg−2 is useful in calculating g at the surface of these bodies.
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Electromagnetic spectrum
Light is often characterized by wavelength. This is incorrect; red light always has the same frequency but the wavelength
depends on the index of refraction (and hence the medium). When someone says that “red light has a wavelength of 700
nm” this is understood to be the wavelength in vacuum.

G
am

m
a 

ra
ys

Vi
sib

le
 L

ig
ht

M
ic

ro
w

av
es

F
M

/A
M

 R
ad

io

T
el

ev
is

io
n

R
ad

ar

10
20

 H
z

10
19

 H
z

10
18

 H
z

10
17

 H
z

10
16

 H
z

10
15

 H
z

10
14

 H
z

10
13

 H
z

10
12

 H
z

10
11

 H
z

10
10

 H
z

10
9  H

z

10
8  H

z

10
7  H

z

InfraredMicrowavesRadio Ultraviolet X-rays

R
ad

ia
tio

n 
of

 
ob

je
ct

 a
t 3

00
K

Colour λvac range λ middle Frequency Energy

Red 620–750 nm 700 nm 4.3× 1014 Hz 1.8 eV

Orange 590–620 nm 600 nm 5.0× 1014 Hz 2.0 eV

Yellow 570–590 nm 580 nm 5.1× 1014 Hz 2.1 eV

Green 495–570 nm 540 nm 5.5× 1014 Hz 2.3 eV

Blue 450–495 nm 470 nm 6.4× 1014 Hz 2.6 eV

Violet 380–450 nm 400 nm 7.5× 1014 Hz 3.1 eV

Part of Typical size
Spectrum in vacuum

Short wave radio λ ∼ Building
AM/FM/TV λ ∼ Person
Microwaves λ ∼ Insect
Infrared λ ∼ Flea
Visible λ ∼ Cells
Ultraviolet λ ∼ Molecules
X-rays λ ∼ Atoms
γ-rays λ ∼ Nuclei

Units
You should memorize what the SI prefixes mean. They are used in all branches of science, and can be given on quizzes
and the final without explaining what they mean.

SI prefixes
Name Symbol Meaning Example

femto f ×10−15 1 fm = 10−15 m

pico p ×10−12 1 pm = 10−12 m

nano n ×10−9 1 nm = 10−9 m

micro µ ×10−6 1 µm = 10−6 m

milli m ×10−3 1 mm = 10−3 m

kilo k ×103 1 km = 103 m

mega M ×106 1 Mm = 106 m

giga G ×109 1 Gm = 109 m

tera T ×1012 1 Tm = 1012 m

peta P ×1015 1 Pm = 1015 m

Common non-SI Units
Non-SI Unit Measures Conversion

to SI

Angstom Å Length 1 Å= 10−10 m

Electron-Volt Energy 1 eV = 1.602× 10−19 J

Atomic mass unit Mass 1 amu = 1.66× 10−27 kg



Appendix B: Trigonometry
Circle

θ

r cos(θ)

r sin(θ)

r

sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
cosA+ cosB = 2 cos

(
A+B

2

)
cos

(
A−B

2

)

sin(A+B) = sinA cosB + sinB cosA

cos(A+B) = cosA cosB − sinA sinB

tan(A+B) =
tanA+ tanB

1− tanA tanB

sin θ ≈ θ, θ in radians

tan θ ≈ θ, θ in radians
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Appendix C: Vectors
A vector is a quantity with a mag-

nitude and direction, and in these notes
will be denoted by a bold letter (such as
A). We represent a vector by a straight
arrow; the length of the arrow represents
the vectors magnitude, while the direc-
tion is given by the direction the arrow
points in.

Adding vectors

Vectors do not add like numbers!
It is often useful to combine vectors by
vector addition. For example, if we are
looking for the total momentum of a sys-
tem we add all the momentum vectors.
To find the net force on an object, we
add all the forces acting on that object
together. To find the total electric field
at a particular location, we add all the
electric fields at that location together.
While these examples all refer to differ-
ent physical situations, the way vectors
are added together is the same.

Graphical addition

The grid below shows two vectors A and
B.

A

B

To add these vectors we join the arrows
up to make a “path” which we can fol-
low, always going in the direction of the
arrows. The vector A + B is then the

vector that connects the beginning of
this path to the end.

A B

start end

path
A B

start endA+B

Components

Another method for adding vectors is by
breaking a vector up into components.
While vectors don’t add like numbers,
the components of a vector do. We will
break this vector into x- and y-components,
which are the most common choice. To
do this we must figure out how many
“units” the vector points right and how
many “units” the vectors points up. Some-
times we have a grid like in the example
above in which case we can just count
the number of units, but in many situa-
tions we shall have to use trigonometry
to break a vector into components. In
the example above:

A: 6 units right, −3 units up
B: 4 units right, 4 units up
A + B: 10 units right, 1 unit up

A common mistake

The magnitudes of vectors do not add
like numbers. Notice that in the exam-
ple given, the length of the three vectors
can be found by Pythagorus’s theorem.
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The lengths are:

|A| =
√

(6)2 + (−3)2 units
= 6.71 units

|B| =
√

(4)2 + (4)2 units
= 10.05 units

|A + B| =
√

(6 + 4)2 + (−3 + 4)2 units
= 10.05 units
6= 6.71 units + 5.66 units

The length of a vector A is denoted |A|.

Subtracting vectors

The negative of a vector −B is B with
the arrow pointing in the opposite di-
rection. To subtract B from A , we add
vectors A with the vector −B:

A−B = A + (−B)

Multiplying vectors

(Called “scalar multiplication” in other texts)

Multiplying a vector by a positive num-
ber changes the magnitude of a vector,
but not the direction. For example 2A
points in the same direction as A but is
twice as long.

Multiplying a vector by a negative num-
ber changes the magnitude of the vector
and makes it point in the opposite di-
rection. For example −2A points in the
opposite direction as A and is twice as
long.

If we multiply a vector by a number
with units, the final vector has a mag-
nitude with these new units as well. An
example that shows all of these possibil-
ities is

Ffield on q = qE

where

• The units of force are N, of q are
C and of E are N/C.

• If q is positive, Ffield on q and E
are in the same direction.

• If q is negative, Ffield on q and E
are in opposite directions.

Into and out of the page

Drawing vectors going into the page or
out of the page is difficult, so a special
notation has been adopted for this pur-
pose. The symbols we use to represent
a vector going in or out of the page are
chosen because they look like a dart go-
ing in or out of the page:

Representing a vector coming out of the page

Representing a vector going into the page

Warning

This was a brief recap of vectors that
should be familiar to you from 7B. If you
still find vectors confusing, look through
your 7B course notes or ask a TA during
office hours.



Appendix D: Calculus
Differentiation

xx1 x2

df

dx

∣∣∣∣
x=x0

=
y1 − y2

x1 − x2
=

“rise”
“run”

x0

f(x)
y1

y2

This course is aimed at teaching con-
cepts, but some advanced mathematics
is required. We want you to be able
to “graphically differentiate” functions.
This means identifying the tangent line
at a particular point, and finding the
slope of the tangent line using

slope =
“rise”
“run”

=
∆y

∆x
.

The graph above shows an example of
finding the tangent line (in blue) and
calculating the slope of the function at
the point x0. The table below gives some
uesful derivatives (only required for some
professors):

Some useful derivatives
f(x) f ′(x)
Ax A
A sin(ωx + φ) Aω cos(ωx + φ)
A cos(ωx + φ) −Aω sin(ωx + φ)
1/x −1/x2

A, ω and φ are all constants in the above.

Integration

Area =
N∑

i

f(x)∆xf(x)

f(x1)

f(x2)

xx1 x2 x3

∆x

∆x

∆x

xN

In this class we will be interested in quan-
tities accumulated from the initial to the
final point, represented by area under
the curve. An approximation to the area
under the curve between x1 and xN is
given by the area in the shaded rect-
angles, each with width ∆x. As these
rectangles become infinitely thin the an-
swer becomes exact. This exact value is
called the integral of the function.

In this course you will be expected to
know some basic facts about integrals:

∫ xf

xi

Af(x) dx = A

∫ xf

xi

f(x) dx A any constant∫ xf

xi

dx = ∆x∫ xf

xi

x dx =
1
2
(x2

f − x2
i )

Some useful integrals for doing physics,
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but not essential for this class, are∫ xf

xi

1
x2

dx = − 1
xf

+
1
xi∫ xf

xi

1
x

dx = ln
∣∣∣∣xf

xi

∣∣∣∣∫ xf

xi

cos(ωx + φ) dx =
1
ω

(
sin(ωxf + φ)

− sin(ωxi + φ)
)

∫ xf

xi

sin(ωx + φ) dx = − 1
ω

(
cos(ωxf + φ)

− cos(ωxi + φ)
)

If you are good with mathematics these
integrals are good for seeing interesting
relationships. The focus of the course is
conceptual and not mathematical, so do
not spend a lot of time trying to memo-
rise these integrals.

Summary

While this course is not mathematically
based, one of the course prerequisites is
Math 16B. As it is a prerequisite no time
on class will be spent covering this ma-
terial. If you are uncertain of any of this
material you should review your calcu-
lus text.



Index

, 179

absorption spectrum, 219
accommodation, 92
allowed energies, 204
Ampère’s Law, 172
amplitude, 9, 14
antinode, 42

beat frequency, 41
beats, 40

carrier frequency, 41
charge, 114
ciliary muscles, 92
constant phase, 15

de Broglie wavelength, 226
diffuse reflection, 60
dimensionality, 11
dipoters, 94
direct method, 111

electric guitar, 182
electromagnetic spectrum, 190
electromagnetic waves, 186
energy density, 192
energy spectrum, 206
equilibrium position, 9
equipotential, 119, 121, 129
eye, 91

glasses, 94

field
and force, 128, 153

and potential, 128, 153
elephant, 109
lines, 129
representing, 129
scalar, 108
vector, 108
vector map, 115

field lines, 115
field method, 111
fire, 191, 219
fixed phase constant, 14
flux, 118, 177
focal length, 81
focal point, 79
freezing out modes, 212
frequency, 14
fundamental, 43

Gauss’s law, 116
geometric optics, 59
gravitational field, 110, 115
gravitational potential, 119
gravitational potential energy, 119
ground state, 206
guitar, 13, 43

harmonic oscilator, 211
harmonic wave, 9
harmonic waves, 13
harmonics, 43
hydrogen atom, 215
hyperopia, 93

image, 61
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real, 77
virtual, 77

Induction, 179
infinite well, 209
intensity, 193
interference, 30, 52

constructive, 30
destructive, 30
partial, 30

Lennard-Jones, 120
Lenz’s law, 180

magnetic
induction, 176
force, 166
force between magnets, 164
poles, 163

magnetic field
source, 170
and poles, 165
from coil, 175
from long straight wire, 173

Magnetic Flux, 177
Magnetic monopoles, 165
magnetic monopoles, 118
magnification, 88
Malus’s law, 196
medium, 6

near point, 92
Newton’s third law, 113
node, 42
normal, 62

optical axis, 79

path length difference, 35
period, 10, 14
phase chart, 32, 38
photoelectric effect, 221
photon, 207, 219

Planck’s constant, 207
polarisation

longitudinal, 11
plane of, 187
sound, 22
transverse, 11

polarisers, 193, 194
potential, 119

electric, 147
potential energy, 119
pressure waves, see sound waves
principal rays, 81

rays, 57
reflection, 44

diffuse, 65
law of, 62
soft, 45

refraction, 67, 69
RHR #1, 173
RHR #2, 167
riding the wave, 15
right hand rule

second, 168

seismograph, 182
simple harmonic oscillator, 211
sink, see charge
Snell’s law, 69
sound waves, 14, 22
source, see charge
spectrum, see electro. spectrum, see

energy spectrum
spin, 171
standing waves, 41
study plan, viii
superconductivity, 238
superposition, 28, 57, 125, 126

tension, 13
thin lens equation, 88
total internal reflection, 71
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total phase, 15
two slit interference, 47

unpolarised light, 196

vector map, see field, 129
Vectors

summary, 243

wave
definition, 7
direction, 15
material, 7

wave function, 14
wave speed, 12, 17
wavefront, 56
wavelength, 10, 14
white light, 191
work function, 222


